搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强流相对论多注电子束在空心圆柱波导中的漂移

王淦平 金晓 黄华 刘振帮

强流相对论多注电子束在空心圆柱波导中的漂移

王淦平, 金晓, 黄华, 刘振帮
PDF
导出引用
导出核心图
  • 建立了多注电子束在空心圆柱波导中传输的理论模型,定量分析了多注电子束自电磁场力与镜像电磁场力对其角向运动的影响,并推导了考虑镜像束流影响下多注电子束的布里渊磁场.开展了模拟仿真研究,模拟与理论计算结果基本一致.研究发现:当电子束注数较少且靠近波导管壁传输时,镜像电磁场力是影响多注电子束角向漂移的主要因素;随着电子束注数或电子束与波导壁间距的增加,镜像电磁场力迅速减小并趋近于零,此时自电磁场力起主导作用;在一般情况下,漂移角速度的变化百分比只与加速电压有关,与多注电子束的注数、空间位置关系等参数无关.在输出电压约670 kV,电流约7 kA,空心圆柱波导长约100 mm的平台上开展了实验研究,研究发现多注电子束存在明显的畸变,通过进一步的分析认为多注阴极柱的侧面发射是导致电子束畸变的一个主要因素,并且二极管加速区的角向漂移不可忽视.提出并模拟验证了采取倾斜多注阴极柱的方法可提高电子束的引入效率.
      通信作者: 王淦平, wanggpcaep@163.com
    • 基金项目: 国家自然科学基金(批准号:11475158)和中国物理研究院科学发展基金(批准号:2014B0402068)资助的课题.
    [1]

    Friedman M, Fernsler R, Slinker S, Hubbard R, Lampe M 1995 Phys. Rev. Lett. 75 1214

    [2]

    Ding Y G 2010 Design, Manufacture and Application of High Power Klystron (Beijing:National Defense Industry Press) pp7-13 (in Chinese)[丁耀根 2010 大功率速调管的制造和应用(北京:国防工业出版社)第7–13 页]

    [3]

    Benford J, Swegle J A 2008 High Power Microwave (2nd Ed.) (Beijing:National Defense Industry Press) pp3-5 (in Chinese)[Benford J, Swegle J A 著 2009 高功率微波(第二版) (中译本) (江伟华, 张弛译)(北京:国防工业出版社) 第3–5 页]

    [4]

    Liu Z B, Zhao Y C, Huang H, Jin X, Lei L R 2015 Acta Phys. Sin. 64 108404 (in Chinese)[刘振帮, 赵欲聪, 黄华, 金晓, 雷禄容 2015 物理学报 64 108404]

    [5]

    Liu L W, Wei Y Y, Wang S M 2013 Chin. Phys. B 22 108401

    [6]

    Luo J R, Cui J, Zhu M, Guo W 2013 Chin. Phys. B 22 067803

    [7]

    Wang Y, Ding Y G, Liu P K, Xie J X, Zhang R 2005 High Power Laser and Particle Beams 8 1133 (in Chinese)[王勇, 丁耀根, 刘濮鲲, 谢敬新, 张瑞 2005 强激光与粒子束 8 1133]

    [8]

    Khanh T N, Dean E P, David K A, George M 2005 IEEE Trans. Plasma Sci. 33 685

    [9]

    Liu Z B, Jin X, Huang H, Chen H B, Wang G P 2012 Acta Phys. Sin. 61 238402 (in Chinese)[刘振帮, 金晓, 黄华, 陈怀璧, 王淦平 2012 物理学报 61 238401]

    [10]

    Xie J L, Zhao Y X 1966 Bunching Theory of Klystron (Beijing:Science Press) pp105-107 (in Chinese)[谢家麟, 赵永翔1966 速调管群聚理论(北京:科学出版社) 第105–107 页]

    [11]

    Robert J B, Edl S 2005 High Power Microwave Sources and Technologies (Beijing:Tsinghua University Press) pp282-289 (in Chinese)[Robert J B, Edl S 2005 高功率微波源与技术(中译本) (北京:清华大学出版社) 第282–289 页]

    [12]

    Huang H, Luo X, Lei L R, Luo G Y, Zhang B Z, Jin X, Tan J 2010 Acta Phys. Sin. 59 1907 (in Chinese)[黄华, 罗雄, 雷禄荣, 罗光耀, 张北镇, 金晓, 谭杰 2010 物理学报 59 1907]

    [13]

    Robert J B, Edl S 2005 High Power Microwave Sources and Technologies (Beijing:Tsinghua University Press) pp78-79 (in Chinese)[Robert J B, Edl S 2005 高功率微波源与技术(中译本) (北京:清华大学出版社) 第77–79 页]

  • [1]

    Friedman M, Fernsler R, Slinker S, Hubbard R, Lampe M 1995 Phys. Rev. Lett. 75 1214

    [2]

    Ding Y G 2010 Design, Manufacture and Application of High Power Klystron (Beijing:National Defense Industry Press) pp7-13 (in Chinese)[丁耀根 2010 大功率速调管的制造和应用(北京:国防工业出版社)第7–13 页]

    [3]

    Benford J, Swegle J A 2008 High Power Microwave (2nd Ed.) (Beijing:National Defense Industry Press) pp3-5 (in Chinese)[Benford J, Swegle J A 著 2009 高功率微波(第二版) (中译本) (江伟华, 张弛译)(北京:国防工业出版社) 第3–5 页]

    [4]

    Liu Z B, Zhao Y C, Huang H, Jin X, Lei L R 2015 Acta Phys. Sin. 64 108404 (in Chinese)[刘振帮, 赵欲聪, 黄华, 金晓, 雷禄容 2015 物理学报 64 108404]

    [5]

    Liu L W, Wei Y Y, Wang S M 2013 Chin. Phys. B 22 108401

    [6]

    Luo J R, Cui J, Zhu M, Guo W 2013 Chin. Phys. B 22 067803

    [7]

    Wang Y, Ding Y G, Liu P K, Xie J X, Zhang R 2005 High Power Laser and Particle Beams 8 1133 (in Chinese)[王勇, 丁耀根, 刘濮鲲, 谢敬新, 张瑞 2005 强激光与粒子束 8 1133]

    [8]

    Khanh T N, Dean E P, David K A, George M 2005 IEEE Trans. Plasma Sci. 33 685

    [9]

    Liu Z B, Jin X, Huang H, Chen H B, Wang G P 2012 Acta Phys. Sin. 61 238402 (in Chinese)[刘振帮, 金晓, 黄华, 陈怀璧, 王淦平 2012 物理学报 61 238401]

    [10]

    Xie J L, Zhao Y X 1966 Bunching Theory of Klystron (Beijing:Science Press) pp105-107 (in Chinese)[谢家麟, 赵永翔1966 速调管群聚理论(北京:科学出版社) 第105–107 页]

    [11]

    Robert J B, Edl S 2005 High Power Microwave Sources and Technologies (Beijing:Tsinghua University Press) pp282-289 (in Chinese)[Robert J B, Edl S 2005 高功率微波源与技术(中译本) (北京:清华大学出版社) 第282–289 页]

    [12]

    Huang H, Luo X, Lei L R, Luo G Y, Zhang B Z, Jin X, Tan J 2010 Acta Phys. Sin. 59 1907 (in Chinese)[黄华, 罗雄, 雷禄荣, 罗光耀, 张北镇, 金晓, 谭杰 2010 物理学报 59 1907]

    [13]

    Robert J B, Edl S 2005 High Power Microwave Sources and Technologies (Beijing:Tsinghua University Press) pp78-79 (in Chinese)[Robert J B, Edl S 2005 高功率微波源与技术(中译本) (北京:清华大学出版社) 第77–79 页]

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1152
  • PDF下载量:  112
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-26
  • 修回日期:  2016-11-18
  • 刊出日期:  2017-02-05

强流相对论多注电子束在空心圆柱波导中的漂移

  • 1. 中国工程物理研究院应用电子学研究所, 高功率微波技术重点实验室, 绵阳 621900;
  • 2. 中国工程物理研究院研究生院, 北京 100088
  • 通信作者: 王淦平, wanggpcaep@163.com
    基金项目: 

    国家自然科学基金(批准号:11475158)和中国物理研究院科学发展基金(批准号:2014B0402068)资助的课题.

摘要: 建立了多注电子束在空心圆柱波导中传输的理论模型,定量分析了多注电子束自电磁场力与镜像电磁场力对其角向运动的影响,并推导了考虑镜像束流影响下多注电子束的布里渊磁场.开展了模拟仿真研究,模拟与理论计算结果基本一致.研究发现:当电子束注数较少且靠近波导管壁传输时,镜像电磁场力是影响多注电子束角向漂移的主要因素;随着电子束注数或电子束与波导壁间距的增加,镜像电磁场力迅速减小并趋近于零,此时自电磁场力起主导作用;在一般情况下,漂移角速度的变化百分比只与加速电压有关,与多注电子束的注数、空间位置关系等参数无关.在输出电压约670 kV,电流约7 kA,空心圆柱波导长约100 mm的平台上开展了实验研究,研究发现多注电子束存在明显的畸变,通过进一步的分析认为多注阴极柱的侧面发射是导致电子束畸变的一个主要因素,并且二极管加速区的角向漂移不可忽视.提出并模拟验证了采取倾斜多注阴极柱的方法可提高电子束的引入效率.

English Abstract

参考文献 (13)

目录

    /

    返回文章
    返回