搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧空位对Co掺杂TiO2稀磁半导体中杂质分布和磁交换的影响

孙运斌 张向群 李国科 杨海涛 成昭华

氧空位对Co掺杂TiO2稀磁半导体中杂质分布和磁交换的影响

孙运斌, 张向群, 李国科, 杨海涛, 成昭华
PDF
导出引用
  • 本文使用基于密度泛函理论的第一性原理方法研究了Co掺杂TiO2稀磁半导体中氧空位对体系能量和磁性的影响. 通过对总能量的计算发现当引入氧空位后近邻杂质体系能量高于均匀掺杂体系, 同时氧空位易在Co近邻位置富集. 进而发现氧空位的存在及其占位可以影响Co离子间的磁交换, 近邻Co离子体系下氧空位的引入使Co离子间的铁磁耦合减弱; 非近邻Co离子体系下, 底面氧空位使Co离子间呈反铁磁耦合而顶点氧空位使Co离子间呈铁磁耦合. 总之, 氧空位的存在对Co掺杂TiO2材料的能量及磁性都有较大影响.
    • 基金项目: 国家重点基础研究发展计划(973项目)(批准号: 2010CB934202)和国家自然科学基金资助的为课题.
    [1]

    Ohno H 1998 Science 281 951

    [2]

    Park Y D, Hanbichi A T, Erwin S C, Hellberg C S, Sullivan J M, Mattson J E, Ambrose T F, Wilson A, Spanos G, Jonker B T 2002 Science 295 651

    [3]

    Lin Q B, Li R Q, Zeng Y Z, Zhu Z Z 2006 Acta Phys. Sin. 55 873 (in Chinese) [林秋宝, 李仁全, 曾永志, 朱梓忠 2006 物理学报 55 873]

    [4]

    Coey J M D 2006 Curr. Opin. Solid State Mater. Sci. 10 83

    [5]

    Matsumoto Y, Murakami M, Shono T, Hasegawa T, Fukumura T, Kawasaki M, Ahmet P, Chikyow T, Koshihara S, Koinuma H 2001 Science 291 854

    [6]

    Balcells L, Frontera C, Sandiumenge F, Roig A, Mart′?nez B 2006 Appl. Phys. Lett. 89, 122501

    [7]

    Wang Z J, Tang J K, Zhang H G, Golub V, Spinu L, Tung L D 2004 J. Appl. Phys. 95 7381

    [8]

    Park W K, Ortega-Hertogs R J, Moodera J S, Punnoose A, Seehra M S 2002 J. Appl. Phys. 91 8093

    [9]

    Manivannan A, Glaspell G, Dutta P, Seehra M S 2005 J. Appl. Phys. 97 10D325

    [10]

    Kim D H, Yang J S, Kim Y S, Kim D W, Noh T W, Bu S D, Kim Y W, Park Y D, Pearton S J, Jo Y, Park J G 2003 Appl. Phys. Lett. 83 4574

    [11]

    Kang S H, Quynh H N T, Yoon S G, Kim E T, Lee Z, Radmilovic V 2007 Appl. Phys. Lett. 90 102504

    [12]

    Shutthanandan V, Thevuthasan S, Heald S M, Droubay T, Engelhard M H, Kaspar T C, McCready D E, Saraf L, Chambers S A, Mun B S, Hamdan N, Nachimuthu P, Taylor B, Sears R P, Sinkovic B 2004 Appl. Phys. Lett. 84 4466

    [13]

    Song H Q, Chen Y X, Ren M J, Ji G 2005 Acta Phys. Sin. 54 369 (in Chinese) [宋红强, 陈延学, 任妙娟, 季刚 2003 物理学报 54 369 ]

    [14]

    Li G K, Zhang X Q, Wu H Y, Huang W G, Jin J L, Sun Y, Cheng Z H 2009 Chin. Phys. B 18 3551

    [15]

    Chen J, Rulis P, Ouyang L, Satpathy S, Ching W Y 2006 Phys. Rev. B 74 235207

    [16]

    Weng H M, Yang X P, Dong J M, Mizuseki H, Kawasaki M, Kawazoe Y 2004 Phys. Rev. B 69 125219

    [17]

    Yan W S, Sun Z H, Pan Z Y, Liu Q H, Yao T, Wu Z Y, Song C, Zeng F, Xie Y N, Hu T D, Wei S Q 2009 Appl. Phys. Lett. 94 042508

    [18]

    Mamiya K, Koide T, Fujimori A, Tokano H, Manaka H, Tanaka A, Toyosaki H, Fukumura T, Kawasaki M 2006 Appl. Phys. Lett. 89 062506

    [19]

    Murakami M, Matsumoto Y, Hasegawa T, Ahmet P, Nakajima K, Chikyow T, Ofuchi H, Nakai I, Koinuma H 2004 J. Appl. Phys. 95 5330

    [20]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169

    [21]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [22]

    Hill R J, Howard C J 1987 J. Appl. Cryst. 20 467

    [23]

    Sato K, Bergqvist L, Kudrnovsk′y J, Dederichs P H, Eriksson O, Turek I, Sanyal B, Bouzerar G, Katayama-Yoshida H, Dinh V A, Fukushima T, Kizaki H, Zeller R 2010 Rev. Mod. Phys. 82 1633

    [24]

    Kennedy R J, Stampe P A, Hu E H, Xiong P, Molnar S V, Xin Y 2004 Appl. Phys. Lett. 84 2832

  • [1]

    Ohno H 1998 Science 281 951

    [2]

    Park Y D, Hanbichi A T, Erwin S C, Hellberg C S, Sullivan J M, Mattson J E, Ambrose T F, Wilson A, Spanos G, Jonker B T 2002 Science 295 651

    [3]

    Lin Q B, Li R Q, Zeng Y Z, Zhu Z Z 2006 Acta Phys. Sin. 55 873 (in Chinese) [林秋宝, 李仁全, 曾永志, 朱梓忠 2006 物理学报 55 873]

    [4]

    Coey J M D 2006 Curr. Opin. Solid State Mater. Sci. 10 83

    [5]

    Matsumoto Y, Murakami M, Shono T, Hasegawa T, Fukumura T, Kawasaki M, Ahmet P, Chikyow T, Koshihara S, Koinuma H 2001 Science 291 854

    [6]

    Balcells L, Frontera C, Sandiumenge F, Roig A, Mart′?nez B 2006 Appl. Phys. Lett. 89, 122501

    [7]

    Wang Z J, Tang J K, Zhang H G, Golub V, Spinu L, Tung L D 2004 J. Appl. Phys. 95 7381

    [8]

    Park W K, Ortega-Hertogs R J, Moodera J S, Punnoose A, Seehra M S 2002 J. Appl. Phys. 91 8093

    [9]

    Manivannan A, Glaspell G, Dutta P, Seehra M S 2005 J. Appl. Phys. 97 10D325

    [10]

    Kim D H, Yang J S, Kim Y S, Kim D W, Noh T W, Bu S D, Kim Y W, Park Y D, Pearton S J, Jo Y, Park J G 2003 Appl. Phys. Lett. 83 4574

    [11]

    Kang S H, Quynh H N T, Yoon S G, Kim E T, Lee Z, Radmilovic V 2007 Appl. Phys. Lett. 90 102504

    [12]

    Shutthanandan V, Thevuthasan S, Heald S M, Droubay T, Engelhard M H, Kaspar T C, McCready D E, Saraf L, Chambers S A, Mun B S, Hamdan N, Nachimuthu P, Taylor B, Sears R P, Sinkovic B 2004 Appl. Phys. Lett. 84 4466

    [13]

    Song H Q, Chen Y X, Ren M J, Ji G 2005 Acta Phys. Sin. 54 369 (in Chinese) [宋红强, 陈延学, 任妙娟, 季刚 2003 物理学报 54 369 ]

    [14]

    Li G K, Zhang X Q, Wu H Y, Huang W G, Jin J L, Sun Y, Cheng Z H 2009 Chin. Phys. B 18 3551

    [15]

    Chen J, Rulis P, Ouyang L, Satpathy S, Ching W Y 2006 Phys. Rev. B 74 235207

    [16]

    Weng H M, Yang X P, Dong J M, Mizuseki H, Kawasaki M, Kawazoe Y 2004 Phys. Rev. B 69 125219

    [17]

    Yan W S, Sun Z H, Pan Z Y, Liu Q H, Yao T, Wu Z Y, Song C, Zeng F, Xie Y N, Hu T D, Wei S Q 2009 Appl. Phys. Lett. 94 042508

    [18]

    Mamiya K, Koide T, Fujimori A, Tokano H, Manaka H, Tanaka A, Toyosaki H, Fukumura T, Kawasaki M 2006 Appl. Phys. Lett. 89 062506

    [19]

    Murakami M, Matsumoto Y, Hasegawa T, Ahmet P, Nakajima K, Chikyow T, Ofuchi H, Nakai I, Koinuma H 2004 J. Appl. Phys. 95 5330

    [20]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169

    [21]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [22]

    Hill R J, Howard C J 1987 J. Appl. Cryst. 20 467

    [23]

    Sato K, Bergqvist L, Kudrnovsk′y J, Dederichs P H, Eriksson O, Turek I, Sanyal B, Bouzerar G, Katayama-Yoshida H, Dinh V A, Fukushima T, Kizaki H, Zeller R 2010 Rev. Mod. Phys. 82 1633

    [24]

    Kennedy R J, Stampe P A, Hu E H, Xiong P, Molnar S V, Xin Y 2004 Appl. Phys. Lett. 84 2832

  • [1] 陈静, 金国钧, 马余强. 氧空位对钴掺杂氧化锌半导体磁性能的影响. 物理学报, 2009, 58(4): 2707-2712. doi: 10.7498/aps.58.2707
    [2] 王 漪, 孙 雷, 韩德栋, 刘力锋, 康晋锋, 刘晓彦, 张 兴, 韩汝琦. ZnCoO稀磁半导体的室温磁性. 物理学报, 2006, 55(12): 6651-6655. doi: 10.7498/aps.55.6651
    [3] 林秋宝, 李仁全, 曾永志, 朱梓忠. TM掺杂的Ⅲ-Ⅴ族稀磁半导体电磁性质的第一原理计算. 物理学报, 2006, 55(2): 873-878. doi: 10.7498/aps.55.873
    [4] 韦志仁, 李 军, 刘 超, 林 琳, 郑一博, 葛世艳, 张华伟, 董国义, 窦军红. Cu对Zn1-xFexO稀磁半导体磁性的影响. 物理学报, 2006, 55(10): 5521-5524. doi: 10.7498/aps.55.5521
    [5] 于 宙, 李 祥, 龙 雪, 程兴旺, 王晶云, 刘 颖, 曹茂盛, 王富耻. Mn掺杂ZnO稀磁半导体材料的制备和磁性研究. 物理学报, 2008, 57(7): 4539-4544. doi: 10.7498/aps.57.4539
    [6] 朱明原, 刘聪, 薄伟强, 舒佳武, 胡业旻, 金红明, 王世伟, 李瑛. 脉冲磁场下水热法制备Cr掺杂ZnO稀磁半导体晶体. 物理学报, 2012, 61(7): 078106. doi: 10.7498/aps.61.078106
    [7] 王世伟, 朱明原, 钟民, 刘聪, 李瑛, 胡业旻, 金红明. 脉冲磁场对水热法制备Mn掺杂ZnO稀磁半导体的影响. 物理学报, 2012, 61(19): 198103. doi: 10.7498/aps.61.198103
    [8] 祝梦遥, 鲁军, 马佳淋, 李利霞, 王海龙, 潘东, 赵建华. 高质量稀磁半导体(Ga, Mn)Sb单晶薄膜分子束外延生长. 物理学报, 2015, 64(7): 077501. doi: 10.7498/aps.64.077501
    [9] 路忠林, 邹文琴, 徐明祥, 张凤鸣. 单晶和孪晶的Zn0.96Co0.04O稀磁半导体薄膜的制备与研究. 物理学报, 2009, 58(12): 8467-8472. doi: 10.7498/aps.58.8467
    [10] 樊济宇, 冯瑜, 陆地, 张卫纯, 胡大治, 杨玉娥, 汤如俊, 洪波, 凌浪生, 王彩霞, 马春兰, 朱岩. N型稀磁半导体Ge0.96–xBixFe0.04Te薄膜的磁电性质研究. 物理学报, 2019, 68(10): 107501. doi: 10.7498/aps.68.20190019
    [11] 王叶安, 秦福文, 吴东江, 吴爱民, 徐 茵, 顾 彪. 基于电子回旋共振-等离子体增强金属有机物化学气相沉积技术生长GaMnN稀磁半导体的研究. 物理学报, 2008, 57(1): 508-513. doi: 10.7498/aps.57.508
    [12] 杨威, 姬扬, 罗海辉, 阮学忠, 王玮竹, 赵建华. Curie温度附近稀磁半导体(Ga,Mn)As的电学噪声谱性质. 物理学报, 2009, 58(12): 8560-8565. doi: 10.7498/aps.58.8560
    [13] 王泽普, 付念, 于涵, 徐晶威, 何祺, 郑树凯, 丁帮福, 闫小兵. 铟掺杂钨位增强钨酸铋氧空位光催化效率. 物理学报, 2019, 68(21): 217102. doi: 10.7498/aps.68.20191010
    [14] 蒋然, 杜翔浩, 韩祖银, 孙维登. Ti/HfO2/Pt阻变存储单元中的氧空位聚簇分布. 物理学报, 2015, 64(20): 207302. doi: 10.7498/aps.64.207302
    [15] 栗苹, 许玉堂. 氧空位迁移造成的氧化物介质层时变击穿的蒙特卡罗模拟. 物理学报, 2017, 66(21): 217701. doi: 10.7498/aps.66.217701
    [16] 姚明珍, 顾 牡. 钨酸铅晶体中与氧空位相关的色心研究. 物理学报, 2003, 52(2): 459-462. doi: 10.7498/aps.52.459
    [17] 代广珍, 蒋先伟, 徐太龙, 刘琦, 陈军宁, 代月花. 密度泛函理论研究氧空位对HfO2晶格结构和电学特性影响. 物理学报, 2015, 64(3): 033101. doi: 10.7498/aps.64.033101
    [18] 汤卉, 唐新桂, 蒋艳平, 刘秋香, 李文华. 铌酸锶钡陶瓷中氧空位对离子电导率和弛豫现象的影响. 物理学报, 2019, 68(22): 227701. doi: 10.7498/aps.68.20190562
    [19] 龚宇, 陈柏桦, 熊亮萍, 古梅, 熊洁, 高小铃, 罗阳明, 胡胜, 王育华. 氧空位对Eu2+, Dy3+掺杂的Ca5MgSi3O12发光及余辉性能的影响. 物理学报, 2013, 62(15): 153201. doi: 10.7498/aps.62.153201
    [20] 代广珍, 代月花, 徐太龙, 汪家余, 赵远洋, 陈军宁, 刘琦. HfO2中影响电荷俘获型存储器的氧空位特性第一性原理研究. 物理学报, 2014, 63(12): 123101. doi: 10.7498/aps.63.123101
  • 引用本文:
    Citation:
计量
  • 文章访问数:  2351
  • PDF下载量:  604
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-03-21
  • 修回日期:  2011-05-17
  • 刊出日期:  2012-01-05

氧空位对Co掺杂TiO2稀磁半导体中杂质分布和磁交换的影响

  • 1. 中国科学院物理研究所磁学国家重点实验室, 北京 100190
    基金项目: 

    国家重点基础研究发展计划(973项目)(批准号: 2010CB934202)和国家自然科学基金资助的为课题.

摘要: 本文使用基于密度泛函理论的第一性原理方法研究了Co掺杂TiO2稀磁半导体中氧空位对体系能量和磁性的影响. 通过对总能量的计算发现当引入氧空位后近邻杂质体系能量高于均匀掺杂体系, 同时氧空位易在Co近邻位置富集. 进而发现氧空位的存在及其占位可以影响Co离子间的磁交换, 近邻Co离子体系下氧空位的引入使Co离子间的铁磁耦合减弱; 非近邻Co离子体系下, 底面氧空位使Co离子间呈反铁磁耦合而顶点氧空位使Co离子间呈铁磁耦合. 总之, 氧空位的存在对Co掺杂TiO2材料的能量及磁性都有较大影响.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回