搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维泊松方程的遗传PSOR改进算法

彭武 何怡刚 方葛丰 樊晓腾

二维泊松方程的遗传PSOR改进算法

彭武, 何怡刚, 方葛丰, 樊晓腾
PDF
导出引用
导出核心图
  • 针对二维泊松方程在实际应用过程中几种常用方法存在计算量大、易发散、局部收敛等不足, 提出了一种改进算法.该算法基于并行超松弛迭代法,采用遗传算法对松弛因子进行全局寻优, 解决了超松弛迭代法求解泊松方程时最佳松弛因子难以确定的问题. 构建了多目标适应度函数,优化了遗传算子参数,分析了算法的计算量、计算时间与误差精度, 与传统方法进行了对比研究.结果表明:松弛因子对泊松方程求解的速度与精度影响显著; 改进算法能减少迭代次数,节省计算时间,加快方程的求解;算法适合于求解计算量较大、 精度要求较高的时域有限差分方程,而且精度要求越高,算法的性能越好,节省的时间也越多.
    • 基金项目: 国家杰出青年科学基金(批准号: 50925727)、 国家自然科学基金(批准号: 60876022, 61102039, 51107034)、 湖南省科技计划项目(批准号: 2011J4, 2011JK2023)、 国防预研重大项目(批准号: C1120110004)、广东省教育部产学研计划(批准号: 2009B090300196) 和中央高校基本科研业务费资助的课题.
    [1]

    Wang X Y, Zhang H M, Wang G Y, Song J J, Qin S S, Qu J T 2011 Acta Phys. Sin. 60 027102 (in Chinese) [王晓艳, 张鹤鸣, 王冠宇, 宋建军, 秦珊珊, 屈江涛 2011 物理学报 60 027102]

    [2]

    Shang Y, Huo B Z, Meng C N, Yuan J H 2010 Acta Phys. Sin. 59 8178 (in Chinese) [尚英, 霍丙忠, 孟春宁, 袁景和 2010 物理学报 59 8178]

    [3]

    Ji F Y, Zhang S L 2012 Acta Phys. Sin. 61 080202 (in Chinese) [吉飞宇, 张顺利 2012 物理学报 61 080202]

    [4]

    Ma J W, Yang H Z, Zhu Y P 2001 Acta Phys. Sin. 50 1415 (in Chinese) [马坚伟, 杨慧珠, 朱亚平 2001 物理学报 50 1415]

    [5]

    Liu S K, Fu Z T, Liu S D 2001 Phys. Lett. A 289 69

    [6]

    Kohno T, Kotakemori H, Nikia H 1997 Linear Algebra Appl. 267 113

    [7]

    Hadjidimos A 2000 Journal of Computational and Applied Mathematics 123 77

    [8]

    Smith B F, Bjorstad P E, Gropp W D 1996 Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations (Cambridge: Cambridge University Press) p124

    [9]

    Wang X B, Liang Z C, Wu Z S, 2012 Acta Phys. Sin. 61 124104 (in Chinese) [王晓冰, 梁子长, 吴振森 2012 物理学报 61 124104]

    [10]

    He J, Xu J Y, Yao X 2000 IEEE Trans on Evolutionary Computation 4 295

    [11]

    Dai D, Ma X K, Li F C, You Y 2002 Acta Phys. Sin. 51 2459 (in Chinese) [戴栋, 马西奎, 李富才, 尤勇 2002 物理学报 51 2459]

    [12]

    Zhao Z J, Zhen S L, Shang J N, Kong X Z 2007 Acta Phys. Sin. 56 6760 (in Chinese) [赵知劲, 郑仕链, 尚俊娜, 孔宪正 2007 物理学报 56 6760]

    [13]

    Dutta D, Dutta P, Sil J 2012 Proceedings of the 1st International Conference on Recent Advances in Information Technology, Dhanbad, India, March 15-17 2012 p548

    [14]

    Sweilam N H, Moharram H M, Ahmed S 2012 Proceedings of the 8th International Conference on Informatics and Systems, Cairo, Egypt, May 14-16, 2012 p78

    [15]

    Xu Q Y 2011 Proceedings of the 2011 Inernational Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, Beijing, China, Octorber 10-12, 2011 p295

    [16]

    Wang B Z 2002 Computational electromagnetic (Beijing: Science Press) p34 (in Chinese) [王秉中 2002 计算电磁学(北京:科学出版社) 第34页]

    [17]

    Srinivas M, Patnaik L M 1994 IEEE Trans. on SMC 24 656

    [18]

    Xie Z C, Zhou Y Q 2009 Mathematics in Practice and Theory 39 154 (in Chinese) [谢竹诚, 周永权 2009 数学的实践与认知 39 154]

  • [1]

    Wang X Y, Zhang H M, Wang G Y, Song J J, Qin S S, Qu J T 2011 Acta Phys. Sin. 60 027102 (in Chinese) [王晓艳, 张鹤鸣, 王冠宇, 宋建军, 秦珊珊, 屈江涛 2011 物理学报 60 027102]

    [2]

    Shang Y, Huo B Z, Meng C N, Yuan J H 2010 Acta Phys. Sin. 59 8178 (in Chinese) [尚英, 霍丙忠, 孟春宁, 袁景和 2010 物理学报 59 8178]

    [3]

    Ji F Y, Zhang S L 2012 Acta Phys. Sin. 61 080202 (in Chinese) [吉飞宇, 张顺利 2012 物理学报 61 080202]

    [4]

    Ma J W, Yang H Z, Zhu Y P 2001 Acta Phys. Sin. 50 1415 (in Chinese) [马坚伟, 杨慧珠, 朱亚平 2001 物理学报 50 1415]

    [5]

    Liu S K, Fu Z T, Liu S D 2001 Phys. Lett. A 289 69

    [6]

    Kohno T, Kotakemori H, Nikia H 1997 Linear Algebra Appl. 267 113

    [7]

    Hadjidimos A 2000 Journal of Computational and Applied Mathematics 123 77

    [8]

    Smith B F, Bjorstad P E, Gropp W D 1996 Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations (Cambridge: Cambridge University Press) p124

    [9]

    Wang X B, Liang Z C, Wu Z S, 2012 Acta Phys. Sin. 61 124104 (in Chinese) [王晓冰, 梁子长, 吴振森 2012 物理学报 61 124104]

    [10]

    He J, Xu J Y, Yao X 2000 IEEE Trans on Evolutionary Computation 4 295

    [11]

    Dai D, Ma X K, Li F C, You Y 2002 Acta Phys. Sin. 51 2459 (in Chinese) [戴栋, 马西奎, 李富才, 尤勇 2002 物理学报 51 2459]

    [12]

    Zhao Z J, Zhen S L, Shang J N, Kong X Z 2007 Acta Phys. Sin. 56 6760 (in Chinese) [赵知劲, 郑仕链, 尚俊娜, 孔宪正 2007 物理学报 56 6760]

    [13]

    Dutta D, Dutta P, Sil J 2012 Proceedings of the 1st International Conference on Recent Advances in Information Technology, Dhanbad, India, March 15-17 2012 p548

    [14]

    Sweilam N H, Moharram H M, Ahmed S 2012 Proceedings of the 8th International Conference on Informatics and Systems, Cairo, Egypt, May 14-16, 2012 p78

    [15]

    Xu Q Y 2011 Proceedings of the 2011 Inernational Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, Beijing, China, Octorber 10-12, 2011 p295

    [16]

    Wang B Z 2002 Computational electromagnetic (Beijing: Science Press) p34 (in Chinese) [王秉中 2002 计算电磁学(北京:科学出版社) 第34页]

    [17]

    Srinivas M, Patnaik L M 1994 IEEE Trans. on SMC 24 656

    [18]

    Xie Z C, Zhou Y Q 2009 Mathematics in Practice and Theory 39 154 (in Chinese) [谢竹诚, 周永权 2009 数学的实践与认知 39 154]

  • [1] 常红伟, 马华, 张介秋, 张志远, 徐卓, 王甲富, 屈绍波. 基于加权实数编码遗传算法的超材料优化设计. 物理学报, 2014, 63(8): 087804. doi: 10.7498/aps.63.087804
    [2] 王光辉, 王林雪, 王灯山, 刘丛波, 石玉仁. K(m,n,p)方程多-Compacton相互作用的数值研究. 物理学报, 2014, 63(18): 180206. doi: 10.7498/aps.63.180206
    [3] 汪剑波, 卢俊. 双屏频率选择表面结构的遗传算法优化. 物理学报, 2011, 60(5): 057304. doi: 10.7498/aps.60.057304
    [4] 吴忠强, 奥顿, 刘坤. 基于遗传算法的混沌系统模糊控制. 物理学报, 2004, 53(1): 21-24. doi: 10.7498/aps.53.21
    [5] 王东风. 基于遗传算法的统一混沌系统比例-积分-微分控制. 物理学报, 2005, 54(4): 1495-1499. doi: 10.7498/aps.54.1495
    [6] 龚春娟, 胡雄伟. 遗传算法优化设计三角晶格光子晶体. 物理学报, 2007, 56(2): 927-932. doi: 10.7498/aps.56.927
    [7] 林 海, 吴晨旭. 基于遗传算法的重复囚徒困境博弈策略在复杂网络中的演化. 物理学报, 2007, 56(8): 4313-4318. doi: 10.7498/aps.56.4313
    [8] 陈志涛, 于彤军, 张国义, 程兴华, 唐龙谷, 龚 敏, 石瑞英. GaMnN材料红外光谱中洛伦兹振子模型的遗传算法研究. 物理学报, 2008, 57(9): 5875-5880. doi: 10.7498/aps.57.5875
    [9] 俎云霄, 周杰. 基于组合混沌遗传算法的认知无线电资源分配. 物理学报, 2011, 60(7): 079501. doi: 10.7498/aps.60.079501
    [10] 何然, 黄思训, 周晨腾, 姜祝辉. 遗传算法结合正则化方法反演海洋大气波导 . 物理学报, 2012, 61(4): 049201. doi: 10.7498/aps.61.049201
    [11] 朱长纯, 崔万照, 保文星. 基于克隆选择的混合遗传算法在碳纳米管结构优化中的研究. 物理学报, 2005, 54(11): 5281-5287. doi: 10.7498/aps.54.5281
    [12] 牛培峰, 张 君, 关新平. 基于遗传算法的统一混沌系统比例-积分-微分神经网络解耦控制研究. 物理学报, 2007, 56(5): 2493-2497. doi: 10.7498/aps.56.2493
    [13] 宋丹, 张晓林. 基于不动点理论的多系统兼容接收机频点选择问题的研究与遗传算法实现. 物理学报, 2010, 59(9): 6697-6705. doi: 10.7498/aps.59.6697
    [14] 李铁军, 孙跃, 郑骥文, 邵桂芳, 刘暾东. 基于遗传算法的Au-Cu-Pt三元合金纳米粒子的稳定结构研究. 物理学报, 2015, 64(15): 153601. doi: 10.7498/aps.64.153601
    [15] 钟会林, 吴福根, 姚立宁. 遗传算法在二维声子晶体带隙优化中的应用. 物理学报, 2006, 55(1): 275-280. doi: 10.7498/aps.55.275
    [16] 牛培峰, 张 君, 关新平. 基于遗传算法的混沌系统二自由度比例-积分-微分控制研究. 物理学报, 2007, 56(7): 3759-3765. doi: 10.7498/aps.56.3759
    [17] 胡晓琴, 谢国锋. 遗传算法优化BaTiO3壳模型势参数. 物理学报, 2011, 60(1): 013401. doi: 10.7498/aps.60.013401
    [18] 戴栋, 马西奎, 李富才, 尤勇. 一种基于遗传算法的混沌系统参数估计方法. 物理学报, 2002, 51(11): 2459-2462. doi: 10.7498/aps.51.2459
    [19] 鄂箫亮, 段海明. 利用Gupta势结合遗传算法研究ConCu55-n(n=0—55)混合团簇的结构演化及基态能量. 物理学报, 2010, 59(8): 5672-5680. doi: 10.7498/aps.59.5672
    [20] 徐志君, 聂青苗, 李鹏华. 用遗传算法研究一维光晶格中玻色凝聚气体基态波函数. 物理学报, 2009, 58(5): 2878-2883. doi: 10.7498/aps.58.2878
  • 引用本文:
    Citation:
计量
  • 文章访问数:  8650
  • PDF下载量:  1201
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-05-27
  • 修回日期:  2012-08-31
  • 刊出日期:  2013-01-20

二维泊松方程的遗传PSOR改进算法

  • 1. 湖南大学电气与信息工程学院, 长沙 410082;
  • 2. 合肥工业大学电气与自动化工程学院, 合肥 230009;
  • 3. 电子测试技术国防科技重点实验室, 青岛 266555
    基金项目: 

    国家杰出青年科学基金(批准号: 50925727)、 国家自然科学基金(批准号: 60876022, 61102039, 51107034)、 湖南省科技计划项目(批准号: 2011J4, 2011JK2023)、 国防预研重大项目(批准号: C1120110004)、广东省教育部产学研计划(批准号: 2009B090300196) 和中央高校基本科研业务费资助的课题.

摘要: 针对二维泊松方程在实际应用过程中几种常用方法存在计算量大、易发散、局部收敛等不足, 提出了一种改进算法.该算法基于并行超松弛迭代法,采用遗传算法对松弛因子进行全局寻优, 解决了超松弛迭代法求解泊松方程时最佳松弛因子难以确定的问题. 构建了多目标适应度函数,优化了遗传算子参数,分析了算法的计算量、计算时间与误差精度, 与传统方法进行了对比研究.结果表明:松弛因子对泊松方程求解的速度与精度影响显著; 改进算法能减少迭代次数,节省计算时间,加快方程的求解;算法适合于求解计算量较大、 精度要求较高的时域有限差分方程,而且精度要求越高,算法的性能越好,节省的时间也越多.

English Abstract

参考文献 (18)

目录

    /

    返回文章
    返回