搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属纳米颗粒的热导率

黄丛亮 冯妍卉 张欣欣 李静 王戈 侴爱辉

金属纳米颗粒的热导率

黄丛亮, 冯妍卉, 张欣欣, 李静, 王戈, 侴爱辉
PDF
导出引用
导出核心图
  • 本文使用统计模拟方法对金属纳米颗粒的电子平均自由程进行了计算, 并考察了纳米颗粒的晶格比热和声子平均群速度, 最后应用动力学理论对纳米颗粒的电子热导率和声子热导率分别进行了求解. 研究结果表明: 具有相同特征尺寸的方形、球形纳米颗粒的无量纲电子(或声子)平均自由程比较接近. 金属纳米颗粒的电子热导率远大于声子热导率; 电子、声子热导率随着直径减小呈现降低趋势, 而电子热导率的颗粒尺度依赖性比声子热导率更为明显; 随着颗粒直径进一步减小, 声子热导率与电子热导率趋于同一数量级. 当纳米颗粒特征尺寸大于4倍块材电子(或声子)平均自由程, 其电子(或声子)热导率的颗粒尺度依赖性将减弱.
    • 基金项目: 获国家自然科学基金重点项目(批准号: 50836001)和霍英东教育基金会资助的课题.
    [1]

    Shi Z, Neoh K G, Kang E T 2004 Langmuir 20 6847

    [2]

    Mei Y, Lu Y, Polzer F, Ballauff M, Drechsler M 2007 Chem. Mater. 19 1062

    [3]

    Mei Y, Sharma G, Lu Y, Ballauff M, Drechsler M, Irrgang T, Kempe R 2005 Langmuir 21 12229

    [4]

    Frederix F, Friedt J M, Choi K H, Laureyn W, Campitelli A, Mondelaers D, Maes G, Borghs G 2003 Anal. Chem. 75 6894

    [5]

    Magdassi S, Grouchko M, Toker D, Kamyshny A, Balberg I, Millo O 2005 Langmuir 21 10264

    [6]

    Zhou J,Yang J, Zhang Z, Liu W, Xue Q 1999 Mater. Res. Bull. 34 1361

    [7]

    Esteban-Cubillo A, Pecharromán C, Aguilar E, Santarén J, Moya J S 2006 J. Mater. Sci. 41 5208

    [8]

    Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Bleve-Zacheo T, D'Alessio M, Zambonin P G, Traversa E 2005 Chem. Mater. 17 5255

    [9]

    Huang H, Remsen E E, Kowalewski T, Wooley K L. 1999 J. Am. Chem. Soc. 121 3805

    [10]

    Prasher R, Bhattacharya P, Phelan P E 2005 Phys. Rev. Lett. 94 025901

    [11]

    Zeng J L, Sun L X, Xu F, Tan Z C, Zhang Z H, Zhang J, Zhang T 2007 J. Therm. Anal. Cal. 87 369

    [12]

    Yuan S P, Jiang P X 2006 Int. J. Thermophys. 27 581

    [13]

    Flik M I, Tien C L 1990 J. Heat Transfer Trans. ASME 112 872

    [14]

    Richardson R A, Nori F 1993 Appl. Phys. Lett. 63 2076

    [15]

    Richardson R A, Nori F 1993 Phys. Rev. B 48 15209

    [16]

    Krzysztof I 2010 Nanoelectronics: Nanowires, Molecular Electronics, and Nanodevices (McGraw-Hill Professional), p7

    [17]

    Feng B, Li Z, Zhang X 2009 J. Phys. D: Appl. Phys. 42 055311

    [18]

    Ashcroft N W, Mermin N D 1976 Solid State Physics (Holt, Rinehart and Winston, New York), p2

    [19]

    Feng B, Li Z, Zhang X 2009 Thin Solid Films 517 2803

    [20]

    Yarimbiyik A E, Schafft H A, Allen R A, Zaghloul M E, Blackburn D L 2006 Microelectron. Reliab. 46 1050

    [21]

    Yang C C, Xiao M X, Li W, Jiang Q 2006 Solid State Commu. 139 148

    [22]

    Liang L H, Li B W 2006 Phys. Rev. B 73 153303

    [23]

    Jiang Q, Shi H X, Zhao M 1999 J. Chem. Phys. 111 2176

    [24]

    Ashcroft N W, Mermin N D 1976 Solid State Physics (Holt, Rinehart and Winston, New York) p458

    [25]

    Liang L H,Wei Y G, Li B W 2008 J. Appl. Phys. 103 084314

    [26]

    Mamand S M, Omar M S, Muhammad A J 2012 Mater. Res. Bull. 47 1264

    [27]

    Fuchs K 1938 Proc. Camb. Phil. Soc. 34 100

    [28]

    Sondheimer E H 1952 Adv. Phys. 1 1

    [29]

    Tien C L, Majumdar A, Gerner F M 1998 Microscale Energy Transport (Washington, DC: Taylor and Francis)

    [30]

    Shapira Y, Deutscher G 1984 Phys. Rev. B 30 166

    [31]

    Stojanovic N, Maithripala D H S, Berg J M, Holtz M 2010 Phys. Rev. B 82 075418

    [32]

    Jiang Q, Zhou X H, Zhao M 2002 J. Chem. Phys. 117 10269

    [33]

    Heino P, Ristolainen E 2003 Microelectron. J. 34 773

    [34]

    Zhou Y, Anglin B, Strachan A 2007 J. Chem. Phys. 127 184702

  • [1]

    Shi Z, Neoh K G, Kang E T 2004 Langmuir 20 6847

    [2]

    Mei Y, Lu Y, Polzer F, Ballauff M, Drechsler M 2007 Chem. Mater. 19 1062

    [3]

    Mei Y, Sharma G, Lu Y, Ballauff M, Drechsler M, Irrgang T, Kempe R 2005 Langmuir 21 12229

    [4]

    Frederix F, Friedt J M, Choi K H, Laureyn W, Campitelli A, Mondelaers D, Maes G, Borghs G 2003 Anal. Chem. 75 6894

    [5]

    Magdassi S, Grouchko M, Toker D, Kamyshny A, Balberg I, Millo O 2005 Langmuir 21 10264

    [6]

    Zhou J,Yang J, Zhang Z, Liu W, Xue Q 1999 Mater. Res. Bull. 34 1361

    [7]

    Esteban-Cubillo A, Pecharromán C, Aguilar E, Santarén J, Moya J S 2006 J. Mater. Sci. 41 5208

    [8]

    Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Bleve-Zacheo T, D'Alessio M, Zambonin P G, Traversa E 2005 Chem. Mater. 17 5255

    [9]

    Huang H, Remsen E E, Kowalewski T, Wooley K L. 1999 J. Am. Chem. Soc. 121 3805

    [10]

    Prasher R, Bhattacharya P, Phelan P E 2005 Phys. Rev. Lett. 94 025901

    [11]

    Zeng J L, Sun L X, Xu F, Tan Z C, Zhang Z H, Zhang J, Zhang T 2007 J. Therm. Anal. Cal. 87 369

    [12]

    Yuan S P, Jiang P X 2006 Int. J. Thermophys. 27 581

    [13]

    Flik M I, Tien C L 1990 J. Heat Transfer Trans. ASME 112 872

    [14]

    Richardson R A, Nori F 1993 Appl. Phys. Lett. 63 2076

    [15]

    Richardson R A, Nori F 1993 Phys. Rev. B 48 15209

    [16]

    Krzysztof I 2010 Nanoelectronics: Nanowires, Molecular Electronics, and Nanodevices (McGraw-Hill Professional), p7

    [17]

    Feng B, Li Z, Zhang X 2009 J. Phys. D: Appl. Phys. 42 055311

    [18]

    Ashcroft N W, Mermin N D 1976 Solid State Physics (Holt, Rinehart and Winston, New York), p2

    [19]

    Feng B, Li Z, Zhang X 2009 Thin Solid Films 517 2803

    [20]

    Yarimbiyik A E, Schafft H A, Allen R A, Zaghloul M E, Blackburn D L 2006 Microelectron. Reliab. 46 1050

    [21]

    Yang C C, Xiao M X, Li W, Jiang Q 2006 Solid State Commu. 139 148

    [22]

    Liang L H, Li B W 2006 Phys. Rev. B 73 153303

    [23]

    Jiang Q, Shi H X, Zhao M 1999 J. Chem. Phys. 111 2176

    [24]

    Ashcroft N W, Mermin N D 1976 Solid State Physics (Holt, Rinehart and Winston, New York) p458

    [25]

    Liang L H,Wei Y G, Li B W 2008 J. Appl. Phys. 103 084314

    [26]

    Mamand S M, Omar M S, Muhammad A J 2012 Mater. Res. Bull. 47 1264

    [27]

    Fuchs K 1938 Proc. Camb. Phil. Soc. 34 100

    [28]

    Sondheimer E H 1952 Adv. Phys. 1 1

    [29]

    Tien C L, Majumdar A, Gerner F M 1998 Microscale Energy Transport (Washington, DC: Taylor and Francis)

    [30]

    Shapira Y, Deutscher G 1984 Phys. Rev. B 30 166

    [31]

    Stojanovic N, Maithripala D H S, Berg J M, Holtz M 2010 Phys. Rev. B 82 075418

    [32]

    Jiang Q, Zhou X H, Zhao M 2002 J. Chem. Phys. 117 10269

    [33]

    Heino P, Ristolainen E 2003 Microelectron. J. 34 773

    [34]

    Zhou Y, Anglin B, Strachan A 2007 J. Chem. Phys. 127 184702

  • [1] 刘英光, 边永庆, 韩中合. 包含倾斜晶界的双晶ZnO的热输运行为. 物理学报, 2020, 69(3): 033101. doi: 10.7498/aps.69.20190627
    [2] 张梦, 姚若河, 刘玉荣. 纳米尺度金属-氧化物半导体场效应晶体管沟道热噪声模型. 物理学报, 2020, 69(5): 057101. doi: 10.7498/aps.69.20191512
    [3] 卢超, 陈伟, 罗尹虹, 丁李利, 王勋, 赵雯, 郭晓强, 李赛. 纳米体硅鳍形场效应晶体管单粒子瞬态中的源漏导通现象研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191896
    [4] 杨建刚, 胡春波, 朱小飞, 李悦, 胡旭, 邓哲. 粉末颗粒气力加注特性实验研究. 物理学报, 2020, 69(4): 048102. doi: 10.7498/aps.69.20191273
    [5] 罗菊, 韩敬华. 激光等离子体去除微纳颗粒的热力学研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191933
    [6] 朱肖丽, 胡耀垓, 赵正予, 张援农. 钡和铯释放的电离层扰动效应对比. 物理学报, 2020, 69(2): 029401. doi: 10.7498/aps.69.20191266
    [7] Algethami ObaidallahA(伊比), 李歌天, 柳祝红, 马星桥. Heusler合金Mn50–xCrxNi42Sn8的相变、磁性与交换偏置效应. 物理学报, 2020, 69(5): 058102. doi: 10.7498/aps.69.20191551
    [8] 王凤阳, 胡仁志, 谢品华, 王怡慧, 陈浩, 张国贤, 刘文清. 基于同步光解的OH自由基标定方法研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200153
    [9] 梁晋洁, 高宁, 李玉红. 表面效应对铁\begin{document}${\left\langle 100 \right\rangle} $\end{document}间隙型位错环的影响. 物理学报, 2020, 69(3): 036101. doi: 10.7498/aps.69.20191379
    [10] 董正琼, 赵杭, 朱金龙, 石雅婷. 入射光照对典型光刻胶纳米结构的光学散射测量影响分析. 物理学报, 2020, 69(3): 030601. doi: 10.7498/aps.69.20191525
    [11] 徐贤达, 赵磊, 孙伟峰. 石墨烯纳米网电导特性的能带机理第一原理. 物理学报, 2020, 69(4): 047101. doi: 10.7498/aps.69.20190657
    [12] 李闯, 李伟伟, 蔡理, 谢丹, 刘保军, 向兰, 杨晓阔, 董丹娜, 刘嘉豪, 陈亚博. 基于银纳米线电极-rGO敏感材料的柔性NO2气体传感器. 物理学报, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191390
    [13] 梁琦, 王如志, 杨孟骐, 王长昊, 刘金伟. Al2O3衬底无催化剂生长GaN纳米线及其光学性能研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191923
    [14] 张雅男, 詹楠, 邓玲玲, 陈淑芬. 利用银纳米立方增强效率的多层溶液加工白光有机发光二极管. 物理学报, 2020, 69(4): 047801. doi: 10.7498/aps.69.20191526
    [15] 翁明, 谢少毅, 殷明, 曹猛. 介质材料二次电子发射特性对微波击穿的影响. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200026
    [16] 刘乃漳, 张雪冰, 姚若河. AlGaN/GaN 高电子迁移率器件外部边缘电容的物理模型. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191931
    [17] 罗端, 惠丹丹, 温文龙, 李立立, 辛丽伟, 钟梓源, 吉超, 陈萍, 何凯, 王兴, 田进寿. 超紧凑型飞秒电子衍射仪的设计. 物理学报, 2020, 69(5): 052901. doi: 10.7498/aps.69.20191157
    [18] 方文玉, 张鹏程, 赵军, 康文斌. H, F修饰单层GeTe的电子结构与光催化性质. 物理学报, 2020, 69(5): 056301. doi: 10.7498/aps.69.20191391
    [19] 任县利, 张伟伟, 伍晓勇, 吴璐, 王月霞. 高熵合金短程有序现象的预测及其对结构的电子、磁性、力学性质的影响. 物理学报, 2020, 69(4): 046102. doi: 10.7498/aps.69.20191671
  • 引用本文:
    Citation:
计量
  • 文章访问数:  4626
  • PDF下载量:  2545
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-06-11
  • 修回日期:  2012-08-14
  • 刊出日期:  2013-01-20

金属纳米颗粒的热导率

  • 1. 北京科技大学机械工程学院, 北京100083;
  • 2. 北京科技大学材料学院, 北京100083
    基金项目: 

    获国家自然科学基金重点项目(批准号: 50836001)和霍英东教育基金会资助的课题.

摘要: 本文使用统计模拟方法对金属纳米颗粒的电子平均自由程进行了计算, 并考察了纳米颗粒的晶格比热和声子平均群速度, 最后应用动力学理论对纳米颗粒的电子热导率和声子热导率分别进行了求解. 研究结果表明: 具有相同特征尺寸的方形、球形纳米颗粒的无量纲电子(或声子)平均自由程比较接近. 金属纳米颗粒的电子热导率远大于声子热导率; 电子、声子热导率随着直径减小呈现降低趋势, 而电子热导率的颗粒尺度依赖性比声子热导率更为明显; 随着颗粒直径进一步减小, 声子热导率与电子热导率趋于同一数量级. 当纳米颗粒特征尺寸大于4倍块材电子(或声子)平均自由程, 其电子(或声子)热导率的颗粒尺度依赖性将减弱.

English Abstract

参考文献 (34)

目录

    /

    返回文章
    返回