搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属纳米颗粒的热导率

黄丛亮 冯妍卉 张欣欣 李静 王戈 侴爱辉

金属纳米颗粒的热导率

黄丛亮, 冯妍卉, 张欣欣, 李静, 王戈, 侴爱辉
PDF
导出引用
  • 本文使用统计模拟方法对金属纳米颗粒的电子平均自由程进行了计算, 并考察了纳米颗粒的晶格比热和声子平均群速度, 最后应用动力学理论对纳米颗粒的电子热导率和声子热导率分别进行了求解. 研究结果表明: 具有相同特征尺寸的方形、球形纳米颗粒的无量纲电子(或声子)平均自由程比较接近. 金属纳米颗粒的电子热导率远大于声子热导率; 电子、声子热导率随着直径减小呈现降低趋势, 而电子热导率的颗粒尺度依赖性比声子热导率更为明显; 随着颗粒直径进一步减小, 声子热导率与电子热导率趋于同一数量级. 当纳米颗粒特征尺寸大于4倍块材电子(或声子)平均自由程, 其电子(或声子)热导率的颗粒尺度依赖性将减弱.
    • 基金项目: 获国家自然科学基金重点项目(批准号: 50836001)和霍英东教育基金会资助的课题.
    [1]

    Shi Z, Neoh K G, Kang E T 2004 Langmuir 20 6847

    [2]

    Mei Y, Lu Y, Polzer F, Ballauff M, Drechsler M 2007 Chem. Mater. 19 1062

    [3]

    Mei Y, Sharma G, Lu Y, Ballauff M, Drechsler M, Irrgang T, Kempe R 2005 Langmuir 21 12229

    [4]

    Frederix F, Friedt J M, Choi K H, Laureyn W, Campitelli A, Mondelaers D, Maes G, Borghs G 2003 Anal. Chem. 75 6894

    [5]

    Magdassi S, Grouchko M, Toker D, Kamyshny A, Balberg I, Millo O 2005 Langmuir 21 10264

    [6]

    Zhou J,Yang J, Zhang Z, Liu W, Xue Q 1999 Mater. Res. Bull. 34 1361

    [7]

    Esteban-Cubillo A, Pecharromán C, Aguilar E, Santarén J, Moya J S 2006 J. Mater. Sci. 41 5208

    [8]

    Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Bleve-Zacheo T, D'Alessio M, Zambonin P G, Traversa E 2005 Chem. Mater. 17 5255

    [9]

    Huang H, Remsen E E, Kowalewski T, Wooley K L. 1999 J. Am. Chem. Soc. 121 3805

    [10]

    Prasher R, Bhattacharya P, Phelan P E 2005 Phys. Rev. Lett. 94 025901

    [11]

    Zeng J L, Sun L X, Xu F, Tan Z C, Zhang Z H, Zhang J, Zhang T 2007 J. Therm. Anal. Cal. 87 369

    [12]

    Yuan S P, Jiang P X 2006 Int. J. Thermophys. 27 581

    [13]

    Flik M I, Tien C L 1990 J. Heat Transfer Trans. ASME 112 872

    [14]

    Richardson R A, Nori F 1993 Appl. Phys. Lett. 63 2076

    [15]

    Richardson R A, Nori F 1993 Phys. Rev. B 48 15209

    [16]

    Krzysztof I 2010 Nanoelectronics: Nanowires, Molecular Electronics, and Nanodevices (McGraw-Hill Professional), p7

    [17]

    Feng B, Li Z, Zhang X 2009 J. Phys. D: Appl. Phys. 42 055311

    [18]

    Ashcroft N W, Mermin N D 1976 Solid State Physics (Holt, Rinehart and Winston, New York), p2

    [19]

    Feng B, Li Z, Zhang X 2009 Thin Solid Films 517 2803

    [20]

    Yarimbiyik A E, Schafft H A, Allen R A, Zaghloul M E, Blackburn D L 2006 Microelectron. Reliab. 46 1050

    [21]

    Yang C C, Xiao M X, Li W, Jiang Q 2006 Solid State Commu. 139 148

    [22]

    Liang L H, Li B W 2006 Phys. Rev. B 73 153303

    [23]

    Jiang Q, Shi H X, Zhao M 1999 J. Chem. Phys. 111 2176

    [24]

    Ashcroft N W, Mermin N D 1976 Solid State Physics (Holt, Rinehart and Winston, New York) p458

    [25]

    Liang L H,Wei Y G, Li B W 2008 J. Appl. Phys. 103 084314

    [26]

    Mamand S M, Omar M S, Muhammad A J 2012 Mater. Res. Bull. 47 1264

    [27]

    Fuchs K 1938 Proc. Camb. Phil. Soc. 34 100

    [28]

    Sondheimer E H 1952 Adv. Phys. 1 1

    [29]

    Tien C L, Majumdar A, Gerner F M 1998 Microscale Energy Transport (Washington, DC: Taylor and Francis)

    [30]

    Shapira Y, Deutscher G 1984 Phys. Rev. B 30 166

    [31]

    Stojanovic N, Maithripala D H S, Berg J M, Holtz M 2010 Phys. Rev. B 82 075418

    [32]

    Jiang Q, Zhou X H, Zhao M 2002 J. Chem. Phys. 117 10269

    [33]

    Heino P, Ristolainen E 2003 Microelectron. J. 34 773

    [34]

    Zhou Y, Anglin B, Strachan A 2007 J. Chem. Phys. 127 184702

  • [1]

    Shi Z, Neoh K G, Kang E T 2004 Langmuir 20 6847

    [2]

    Mei Y, Lu Y, Polzer F, Ballauff M, Drechsler M 2007 Chem. Mater. 19 1062

    [3]

    Mei Y, Sharma G, Lu Y, Ballauff M, Drechsler M, Irrgang T, Kempe R 2005 Langmuir 21 12229

    [4]

    Frederix F, Friedt J M, Choi K H, Laureyn W, Campitelli A, Mondelaers D, Maes G, Borghs G 2003 Anal. Chem. 75 6894

    [5]

    Magdassi S, Grouchko M, Toker D, Kamyshny A, Balberg I, Millo O 2005 Langmuir 21 10264

    [6]

    Zhou J,Yang J, Zhang Z, Liu W, Xue Q 1999 Mater. Res. Bull. 34 1361

    [7]

    Esteban-Cubillo A, Pecharromán C, Aguilar E, Santarén J, Moya J S 2006 J. Mater. Sci. 41 5208

    [8]

    Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Bleve-Zacheo T, D'Alessio M, Zambonin P G, Traversa E 2005 Chem. Mater. 17 5255

    [9]

    Huang H, Remsen E E, Kowalewski T, Wooley K L. 1999 J. Am. Chem. Soc. 121 3805

    [10]

    Prasher R, Bhattacharya P, Phelan P E 2005 Phys. Rev. Lett. 94 025901

    [11]

    Zeng J L, Sun L X, Xu F, Tan Z C, Zhang Z H, Zhang J, Zhang T 2007 J. Therm. Anal. Cal. 87 369

    [12]

    Yuan S P, Jiang P X 2006 Int. J. Thermophys. 27 581

    [13]

    Flik M I, Tien C L 1990 J. Heat Transfer Trans. ASME 112 872

    [14]

    Richardson R A, Nori F 1993 Appl. Phys. Lett. 63 2076

    [15]

    Richardson R A, Nori F 1993 Phys. Rev. B 48 15209

    [16]

    Krzysztof I 2010 Nanoelectronics: Nanowires, Molecular Electronics, and Nanodevices (McGraw-Hill Professional), p7

    [17]

    Feng B, Li Z, Zhang X 2009 J. Phys. D: Appl. Phys. 42 055311

    [18]

    Ashcroft N W, Mermin N D 1976 Solid State Physics (Holt, Rinehart and Winston, New York), p2

    [19]

    Feng B, Li Z, Zhang X 2009 Thin Solid Films 517 2803

    [20]

    Yarimbiyik A E, Schafft H A, Allen R A, Zaghloul M E, Blackburn D L 2006 Microelectron. Reliab. 46 1050

    [21]

    Yang C C, Xiao M X, Li W, Jiang Q 2006 Solid State Commu. 139 148

    [22]

    Liang L H, Li B W 2006 Phys. Rev. B 73 153303

    [23]

    Jiang Q, Shi H X, Zhao M 1999 J. Chem. Phys. 111 2176

    [24]

    Ashcroft N W, Mermin N D 1976 Solid State Physics (Holt, Rinehart and Winston, New York) p458

    [25]

    Liang L H,Wei Y G, Li B W 2008 J. Appl. Phys. 103 084314

    [26]

    Mamand S M, Omar M S, Muhammad A J 2012 Mater. Res. Bull. 47 1264

    [27]

    Fuchs K 1938 Proc. Camb. Phil. Soc. 34 100

    [28]

    Sondheimer E H 1952 Adv. Phys. 1 1

    [29]

    Tien C L, Majumdar A, Gerner F M 1998 Microscale Energy Transport (Washington, DC: Taylor and Francis)

    [30]

    Shapira Y, Deutscher G 1984 Phys. Rev. B 30 166

    [31]

    Stojanovic N, Maithripala D H S, Berg J M, Holtz M 2010 Phys. Rev. B 82 075418

    [32]

    Jiang Q, Zhou X H, Zhao M 2002 J. Chem. Phys. 117 10269

    [33]

    Heino P, Ristolainen E 2003 Microelectron. J. 34 773

    [34]

    Zhou Y, Anglin B, Strachan A 2007 J. Chem. Phys. 127 184702

  • [1] 张忻, 马旭颐, 张飞鹏, 武鹏旭, 路清梅, 刘燕琴, 张久兴. 纳米结构碲化铋合金的制备及电热输运特性. 物理学报, 2012, 61(4): 047201. doi: 10.7498/aps.61.047201
    [2] 贺慧芳, 陈志权. 用正电子湮没研究纳米碲化铋的缺陷及其对热导率的影响. 物理学报, 2015, 64(20): 207804. doi: 10.7498/aps.64.207804
    [3] 罗毅, 赵国平, 杨海涛, 宋宁宁, 任肖, 丁浩峰, 成昭华. 单一晶相氧化锰纳米颗粒的交换偏置效应. 物理学报, 2013, 62(17): 176102. doi: 10.7498/aps.62.176102
    [4] 侯泉文, 曹炳阳, 过增元. 碳纳米管的热导率:从弹道到扩散输运. 物理学报, 2009, 58(11): 7809-7814. doi: 10.7498/aps.58.7809
    [5] 李静, 冯妍卉, 张欣欣, 黄丛亮, 杨穆. 考虑界面散射的金属纳米线热导率修正. 物理学报, 2013, 62(18): 186501. doi: 10.7498/aps.62.186501
    [6] 曹炳阳, 董若宇, 孔杰, 陈恒, 徐雁, 容启亮, 蔡岸. 纳米孔模板浸润法制备聚乙烯纳米线阵列的热导率的实验研究. 物理学报, 2012, 61(4): 046501. doi: 10.7498/aps.61.046501
    [7] 王建立, 熊国平, 顾明, 张兴, 梁吉. 多壁碳纳米管/聚丙烯复合材料热导率研究. 物理学报, 2009, 58(7): 4536-4541. doi: 10.7498/aps.58.4536
    [8] 杨平, 吴勇胜, 许海锋, 许鲜欣, 张立强, 李培. TiO2/ZnO纳米薄膜界面热导率的分子动力学模拟. 物理学报, 2011, 60(6): 066601. doi: 10.7498/aps.60.066601
    [9] 杨平, 王晓亮, 李培, 王欢, 张立强, 谢方伟. 氮掺杂和空位对石墨烯纳米带热导率影响的分子动力学模拟. 物理学报, 2012, 61(7): 076501. doi: 10.7498/aps.61.076501
    [10] 李威, 冯妍卉, 陈阳, 张欣欣. 碳纳米管中点缺陷对热导率影响的正交试验模拟分析. 物理学报, 2012, 61(13): 136102. doi: 10.7498/aps.61.136102
    [11] 郑伯昱, 董慧龙, 陈非凡. 基于量子修正的石墨烯纳米带热导率分子动力学表征方法. 物理学报, 2014, 63(7): 076501. doi: 10.7498/aps.63.076501
    [12] 张程宾, 程启坤, 陈永平. 分形结构纳米复合材料热导率的分子动力学模拟研究. 物理学报, 2014, 63(23): 236601. doi: 10.7498/aps.63.236601
    [13] 杨合情, 王喧, 刘守信, 李永放, 张良莹, 姚熹. 含碳纳米颗粒凝胶玻璃的制备及其量子尺寸效应. 物理学报, 2001, 50(2): 341-346. doi: 10.7498/aps.50.341
    [14] 刘东奇, 常彦春, 刘刚钦, 潘新宇. 金刚石纳米颗粒中氮空位色心的电子自旋研究. 物理学报, 2013, 62(16): 164208. doi: 10.7498/aps.62.164208
    [15] 杨延宁, 张志勇, 张富春, 张威虎, 闫军锋, 翟春雪. 纳米金刚石的变温场发射. 物理学报, 2010, 59(4): 2666-2671. doi: 10.7498/aps.59.2666
    [16] 李威, 冯妍卉, 唐晶晶, 张欣欣. 碳纳米管Y形分子结的热导率与热整流现象. 物理学报, 2013, 62(7): 076107. doi: 10.7498/aps.62.076107
    [17] 卢俊勇, 蒋震宇, 张青川, 江慧丰, 刘颢文. Al-Cu多晶锯齿形屈服现象中的尺度效应. 物理学报, 2006, 55(7): 3558-3568. doi: 10.7498/aps.55.3558
    [18] 唐道胜, 华钰超, 周艳光, 曹炳阳. GaN薄膜的热导率模型研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20201611
    [19] 刘演华, 干富军, 张凯. 平面射流场中纳米颗粒的成核与凝并. 物理学报, 2010, 59(6): 4084-4092. doi: 10.7498/aps.59.4084
    [20] 王新亮, 狄勤丰, 张任良, 丁伟朋, 龚玮, 程毅翀. 纳米颗粒吸附岩心表面的强疏水特征. 物理学报, 2012, 61(21): 216801. doi: 10.7498/aps.61.216801
  • 引用本文:
    Citation:
计量
  • 文章访问数:  5683
  • PDF下载量:  2566
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-06-11
  • 修回日期:  2012-08-14
  • 刊出日期:  2013-01-05

金属纳米颗粒的热导率

  • 1. 北京科技大学机械工程学院, 北京100083;
  • 2. 北京科技大学材料学院, 北京100083
    基金项目: 

    获国家自然科学基金重点项目(批准号: 50836001)和霍英东教育基金会资助的课题.

摘要: 本文使用统计模拟方法对金属纳米颗粒的电子平均自由程进行了计算, 并考察了纳米颗粒的晶格比热和声子平均群速度, 最后应用动力学理论对纳米颗粒的电子热导率和声子热导率分别进行了求解. 研究结果表明: 具有相同特征尺寸的方形、球形纳米颗粒的无量纲电子(或声子)平均自由程比较接近. 金属纳米颗粒的电子热导率远大于声子热导率; 电子、声子热导率随着直径减小呈现降低趋势, 而电子热导率的颗粒尺度依赖性比声子热导率更为明显; 随着颗粒直径进一步减小, 声子热导率与电子热导率趋于同一数量级. 当纳米颗粒特征尺寸大于4倍块材电子(或声子)平均自由程, 其电子(或声子)热导率的颗粒尺度依赖性将减弱.

English Abstract

参考文献 (34)

目录

    /

    返回文章
    返回