搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

BiOCl{001}表面原子与电子结构的第一性原理研究

李国旗 张小超 丁光月 樊彩梅 梁镇海 韩培德

BiOCl{001}表面原子与电子结构的第一性原理研究

李国旗, 张小超, 丁光月, 樊彩梅, 梁镇海, 韩培德
PDF
导出引用
导出核心图
  • 基于密度泛函理论的第一性原理方法研究了BiOCl{001}的三种不同终端面({001}-1Cl, {001}-BiO 和{001}-2Cl)的表面弛豫、能带结构、电子态密度和表面能. 计算结果表明: {001}-1Cl, {001}-BiO和{001}-2Cl表面均发生明显弛豫, 而在双Cl原子层处的层间距变化较大, 但未出现振荡弛豫现象, 其中{001}-1Cl表面弛豫较小. 与体相BiOCl电子结构相比, BiOCl{001}面具有较窄的带隙宽度, 并呈现较强局域性:对于{001}-BiO表面, 其导带与价带均往低能方向发生较大移动, 并且在导带底部出现表面态; 而{001}-2Cl表面的表面态主要出现在价带顶; {001}-1Cl表面的带隙中则无表面态产生; 表面态的出现导致{001}-BiO面和{001}-2Cl面带隙明显减小. BiOCl{001}三种终端表面的表面能分析结果表明, {001}-1Cl表面的表面能最小(0.09206 J·m-2), 结构最稳定, 而{001}-BiO表面和{001}-2Cl表面的表面能分别为2.392和2.461 J·m-2. 理论预测{001}-BiO表面和{001}-2Cl表面具有较高的活性, 但在BiOCl晶体生长过程中不易暴露. 本文计算结果为实验获得BiOCl高活性面{001}给予了基础理论解释, 进一步为BiOCl新型光催化材料的应用研究提供理论指导.
    • 基金项目: 国家自然科学基金(批准号: 21176168)、山西省国际合作项目(批准号: 2012081017)和太原市科技项目(批准号: 120123)资助的课题.
    [1]

    Deng Z T, Tang F Q, Muscat A J 2008 Nanotechnology 19 295705-1

    [2]

    Kusainova A M, Lightfoot P, Zhou W Z, Stefanovich S Y, Mosunov A V, Dolgikh V A 2001 Chem. Mater. 13 4731

    [3]

    Charkin D O, Berdonosv P S, Moisejev A M, Shagiakhmetov R R, Dolgikh V A, Lightfoot P 1999 J. Solid. State. Chem. 147 527

    [4]

    Geng J, Hou W H, Lv Y N, Zhu J J, Chen H Y 2005 Inorg. Chem. 44 8503

    [5]

    Cao S H, Guo C F, Lv Y, Guo Y J, Liu Q 2009 Nanotechnology 20 275702-1

    [6]

    Wu S J, Wang C, Cui Y F, Hao W C, Wang T M, Brault P 2011 Mater. Lett. 65 1344

    [7]

    Zhang K L, Liu C M, Huang F Q, Zheng C, Wang W D 2006 Appl. Catal. B: Environ. 68 125

    [8]

    Wu S J, Wang C, Cui Y F, Wang T M, Huang B B, Zhang X Y, Qin X Y, Brault P 2010 Mater. Lett. 64 115

    [9]

    Ye L Q, Deng K J, Xu F, Tian L H, Peng T Y, Zan L 2012 Phys. Chem. Chem. Phys. 14 82

    [10]

    Gao F D, Zeng D W, Huang Q W, Tian S Q, Xie C S 2012 Phys. Chem. Chem. Phys. 14 10572

    [11]

    Klahr B, Gimenez S, Fabregat-Santiago F, Hamann T, Bisquert J 2012 J. Am. Chem. Soc. 134 4294

    [12]

    Huang L, Yang J H, Wang X L, Han J F, Han H X, Li C 2013 Phys. Chem. Chem. Phys. 15 553

    [13]

    Xiang Q J, Yu J G 2011 Chin. J. Catal. 32 525

    [14]

    Pan J, Liu G, Lu G Q, Cheng H M 2011 Angew. Chem. Int. Ed. 50 2133

    [15]

    Bi Y P, Ouyang S X, Umezawa N, Cao J Y, Ye J H 2011 J. Am. Chem. Soc. 133 6490

    [16]

    Yang H G, Liu G, Qiao S Z, Sun C H, Jin Y G, Smith S C, Zou J, Cheng H M, Lu G Q 2009 J. Am. Chem. Soc. 131 4078

    [17]

    Wei P Y, Yang Q L, Guo L 2009 Prog. Chem. 21 1734 (in Chinese) [魏平玉, 杨青林, 郭林2009化学进展 21 1734]

    [18]

    Ye L Q, Zan L, Tian L H, Peng T Y 2011 Chem. Commun. 47 6951

    [19]

    Wang C H, Zhang X T, Yuan B, Shao C L, Liu Y C 2012 Micro Nano Lett. 7 152

    [20]

    Jiang J, Zhao K, Xiao X Y, Zhang L Z 2012 J. Am. Chem. Soc. 134 4473

    [21]

    Zhang H J, Liu L, Zhou Z 2012 Rsc. Adv. 2 9224

    [22]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter 14 2717

    [23]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [24]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [25]

    Pulay P 1969 Mol. Phys. 17 197

    [26]

    Shanno D F, Phua K H 1978 Math. Program. 14 149

    [27]

    Bannister F A 1934 Nature 134 856

    [28]

    Huang W L, Zhu Q S 2008 Comput. Mater. Sci. 43 1101

    [29]

    Zhang X C, Zhao L J, Fan C M, Liang Z H, Han P D 2012 Comput. Mater. Sci. 61 180

    [30]

    Zhang X C, Zhao L J, Fan C M, Liang Z H, Han P D 2012 Physica B 407 4416

    [31]

    Stampfl C, van de Walle C G 1999 Phys. Rev. B 59 5521

    [32]

    Shen Y B, Zhou X, Xu M, Ding Y C, Duan M Y, Linghu R F, Zhu W J 2007 Acta Phys. Sin. 56 3440 (in Chinese) [沈益斌, 周勋, 徐明, 丁迎春, 段满益, 令狐荣锋, 祝文军 2007 物理学报 56 3440]

    [33]

    Zhang H J, Liu L, Zhou Z 2012 Phys. Chem. Chem. Phys. 14 1286

    [34]

    Ma X G, Tang C Q, Huang J Q, Hu L F, Xue X, Zhou W B 2006 Acta Phys. Sin. 55 4208 (in Chinese) [马新国, 唐超群, 黄金球, 胡连峰, 薛霞, 周文斌 2006 物理学报 55 4208]

    [35]

    Ma J X, Jia Y, Liang E J, Wang X C, Wang F, Hu X 2003 Acta Phys. Sin. 52 3155 (in Chinese) [马健新, 贾瑜, 梁二军, 王晓春, 王飞, 胡行 2003 物理学报 52 3155]

    [36]

    Du Y J, Chang B K, Zhang J J, Li B, Wang X H 2012 Acta Phys. Sin. 61 067101 (in Chinese) [杜玉杰, 常本康, 张俊举, 李飙, 王晓晖 2012 物理学报 61 067101]

    [37]

    Lu H L, Xu M, Chen W, Ren J, Ding S J, Zhang W 2006 Acta Phys. Sin. 55 1374 (in Chinese) [卢红亮, 徐敏, 陈玮, 任杰, 丁士进, 张卫 2006 物理学报 55 1374]

    [38]

    Sambrano J R, Longo V M, Longo E, Taft C A 2007 J. Mol. Struct.: Theochem 813 49

    [39]

    Cui J, Liu W 2010 Physica B 405 4687

    [40]

    Zhou K B, Li Y D 2012 Angew. Chem. Int. Ed. 51 602

  • [1]

    Deng Z T, Tang F Q, Muscat A J 2008 Nanotechnology 19 295705-1

    [2]

    Kusainova A M, Lightfoot P, Zhou W Z, Stefanovich S Y, Mosunov A V, Dolgikh V A 2001 Chem. Mater. 13 4731

    [3]

    Charkin D O, Berdonosv P S, Moisejev A M, Shagiakhmetov R R, Dolgikh V A, Lightfoot P 1999 J. Solid. State. Chem. 147 527

    [4]

    Geng J, Hou W H, Lv Y N, Zhu J J, Chen H Y 2005 Inorg. Chem. 44 8503

    [5]

    Cao S H, Guo C F, Lv Y, Guo Y J, Liu Q 2009 Nanotechnology 20 275702-1

    [6]

    Wu S J, Wang C, Cui Y F, Hao W C, Wang T M, Brault P 2011 Mater. Lett. 65 1344

    [7]

    Zhang K L, Liu C M, Huang F Q, Zheng C, Wang W D 2006 Appl. Catal. B: Environ. 68 125

    [8]

    Wu S J, Wang C, Cui Y F, Wang T M, Huang B B, Zhang X Y, Qin X Y, Brault P 2010 Mater. Lett. 64 115

    [9]

    Ye L Q, Deng K J, Xu F, Tian L H, Peng T Y, Zan L 2012 Phys. Chem. Chem. Phys. 14 82

    [10]

    Gao F D, Zeng D W, Huang Q W, Tian S Q, Xie C S 2012 Phys. Chem. Chem. Phys. 14 10572

    [11]

    Klahr B, Gimenez S, Fabregat-Santiago F, Hamann T, Bisquert J 2012 J. Am. Chem. Soc. 134 4294

    [12]

    Huang L, Yang J H, Wang X L, Han J F, Han H X, Li C 2013 Phys. Chem. Chem. Phys. 15 553

    [13]

    Xiang Q J, Yu J G 2011 Chin. J. Catal. 32 525

    [14]

    Pan J, Liu G, Lu G Q, Cheng H M 2011 Angew. Chem. Int. Ed. 50 2133

    [15]

    Bi Y P, Ouyang S X, Umezawa N, Cao J Y, Ye J H 2011 J. Am. Chem. Soc. 133 6490

    [16]

    Yang H G, Liu G, Qiao S Z, Sun C H, Jin Y G, Smith S C, Zou J, Cheng H M, Lu G Q 2009 J. Am. Chem. Soc. 131 4078

    [17]

    Wei P Y, Yang Q L, Guo L 2009 Prog. Chem. 21 1734 (in Chinese) [魏平玉, 杨青林, 郭林2009化学进展 21 1734]

    [18]

    Ye L Q, Zan L, Tian L H, Peng T Y 2011 Chem. Commun. 47 6951

    [19]

    Wang C H, Zhang X T, Yuan B, Shao C L, Liu Y C 2012 Micro Nano Lett. 7 152

    [20]

    Jiang J, Zhao K, Xiao X Y, Zhang L Z 2012 J. Am. Chem. Soc. 134 4473

    [21]

    Zhang H J, Liu L, Zhou Z 2012 Rsc. Adv. 2 9224

    [22]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter 14 2717

    [23]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [24]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [25]

    Pulay P 1969 Mol. Phys. 17 197

    [26]

    Shanno D F, Phua K H 1978 Math. Program. 14 149

    [27]

    Bannister F A 1934 Nature 134 856

    [28]

    Huang W L, Zhu Q S 2008 Comput. Mater. Sci. 43 1101

    [29]

    Zhang X C, Zhao L J, Fan C M, Liang Z H, Han P D 2012 Comput. Mater. Sci. 61 180

    [30]

    Zhang X C, Zhao L J, Fan C M, Liang Z H, Han P D 2012 Physica B 407 4416

    [31]

    Stampfl C, van de Walle C G 1999 Phys. Rev. B 59 5521

    [32]

    Shen Y B, Zhou X, Xu M, Ding Y C, Duan M Y, Linghu R F, Zhu W J 2007 Acta Phys. Sin. 56 3440 (in Chinese) [沈益斌, 周勋, 徐明, 丁迎春, 段满益, 令狐荣锋, 祝文军 2007 物理学报 56 3440]

    [33]

    Zhang H J, Liu L, Zhou Z 2012 Phys. Chem. Chem. Phys. 14 1286

    [34]

    Ma X G, Tang C Q, Huang J Q, Hu L F, Xue X, Zhou W B 2006 Acta Phys. Sin. 55 4208 (in Chinese) [马新国, 唐超群, 黄金球, 胡连峰, 薛霞, 周文斌 2006 物理学报 55 4208]

    [35]

    Ma J X, Jia Y, Liang E J, Wang X C, Wang F, Hu X 2003 Acta Phys. Sin. 52 3155 (in Chinese) [马健新, 贾瑜, 梁二军, 王晓春, 王飞, 胡行 2003 物理学报 52 3155]

    [36]

    Du Y J, Chang B K, Zhang J J, Li B, Wang X H 2012 Acta Phys. Sin. 61 067101 (in Chinese) [杜玉杰, 常本康, 张俊举, 李飙, 王晓晖 2012 物理学报 61 067101]

    [37]

    Lu H L, Xu M, Chen W, Ren J, Ding S J, Zhang W 2006 Acta Phys. Sin. 55 1374 (in Chinese) [卢红亮, 徐敏, 陈玮, 任杰, 丁士进, 张卫 2006 物理学报 55 1374]

    [38]

    Sambrano J R, Longo V M, Longo E, Taft C A 2007 J. Mol. Struct.: Theochem 813 49

    [39]

    Cui J, Liu W 2010 Physica B 405 4687

    [40]

    Zhou K B, Li Y D 2012 Angew. Chem. Int. Ed. 51 602

  • [1] 吴美梅, 张超, 张灿, 孙倩倩, 刘玫. 三维金字塔立体复合基底表面增强拉曼散射特性. 物理学报, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191636
    [2] 梁晋洁, 高宁, 李玉红. 表面效应对铁\begin{document}${\left\langle 100 \right\rangle} $\end{document}间隙型位错环的影响. 物理学报, 2020, 69(3): 036101. doi: 10.7498/aps.69.20191379
    [3] 徐贤达, 赵磊, 孙伟峰. 石墨烯纳米网电导特性的能带机理第一原理. 物理学报, 2020, 69(4): 047101. doi: 10.7498/aps.69.20190657
    [4] 周瑜, 操礼阳, 马晓萍, 邓丽丽, 辛煜. 脉冲射频容性耦合氩等离子体的发射探针诊断. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191864
    [5] 黄永峰, 曹怀信, 王文华. 共轭线性对称性及其对\begin{document}$ {\mathcal{P}}{\mathcal{T}} $\end{document}-对称量子理论的应用. 物理学报, 2020, 69(3): 030301. doi: 10.7498/aps.69.20191173
    [6] 赵建宁, 刘冬欢, 魏东, 尚新春. 考虑界面接触热阻的一维复合结构的热整流机理. 物理学报, 2020, 69(5): 056501. doi: 10.7498/aps.69.20191409
    [7] 刘厚通, 毛敏娟. 一种无需定标的地基激光雷达气溶胶消光系数精确反演方法. 物理学报, 2019, 68(7): 074205. doi: 10.7498/aps.68.20181825
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1082
  • PDF下载量:  890
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-15
  • 修回日期:  2013-03-03
  • 刊出日期:  2013-06-20

BiOCl{001}表面原子与电子结构的第一性原理研究

  • 1. 太原理工大学化学化工学院, 太原 030024;
  • 2. 太原理工大学材料科学与工程学院, 太原 030024
    基金项目: 

    国家自然科学基金(批准号: 21176168)、山西省国际合作项目(批准号: 2012081017)和太原市科技项目(批准号: 120123)资助的课题.

摘要: 基于密度泛函理论的第一性原理方法研究了BiOCl{001}的三种不同终端面({001}-1Cl, {001}-BiO 和{001}-2Cl)的表面弛豫、能带结构、电子态密度和表面能. 计算结果表明: {001}-1Cl, {001}-BiO和{001}-2Cl表面均发生明显弛豫, 而在双Cl原子层处的层间距变化较大, 但未出现振荡弛豫现象, 其中{001}-1Cl表面弛豫较小. 与体相BiOCl电子结构相比, BiOCl{001}面具有较窄的带隙宽度, 并呈现较强局域性:对于{001}-BiO表面, 其导带与价带均往低能方向发生较大移动, 并且在导带底部出现表面态; 而{001}-2Cl表面的表面态主要出现在价带顶; {001}-1Cl表面的带隙中则无表面态产生; 表面态的出现导致{001}-BiO面和{001}-2Cl面带隙明显减小. BiOCl{001}三种终端表面的表面能分析结果表明, {001}-1Cl表面的表面能最小(0.09206 J·m-2), 结构最稳定, 而{001}-BiO表面和{001}-2Cl表面的表面能分别为2.392和2.461 J·m-2. 理论预测{001}-BiO表面和{001}-2Cl表面具有较高的活性, 但在BiOCl晶体生长过程中不易暴露. 本文计算结果为实验获得BiOCl高活性面{001}给予了基础理论解释, 进一步为BiOCl新型光催化材料的应用研究提供理论指导.

English Abstract

参考文献 (40)

目录

    /

    返回文章
    返回