搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

阶梯AlGaN外延新型Al0.25Ga0.75N/GaN HEMTs击穿特性分析

段宝兴 杨银堂

阶梯AlGaN外延新型Al0.25Ga0.75N/GaN HEMTs击穿特性分析

段宝兴, 杨银堂
PDF
导出引用
导出核心图
  • 为了优化AlGaN/GaN HEMTs器件表面电场,提高击穿电压,本文首次提出了一种新型阶梯AlGaN/GaN HEMTs结构. 新结构利用AlGaN/GaN异质结形成的2DEG浓度随外延AlGaN层厚度降低而减小的规律,通过减薄靠近栅边缘外延的AlGaN层,使沟道2DEG浓度分区,形成栅边缘低浓度2DEG区,低的2DEG使阶梯AlGaN交界出现新的电场峰,新电场峰的出现有效降低了栅边缘的高峰电场,优化了AlGaN/GaN HEMTs器件的表面电场分布,使器件击穿电压从传统结构的446 V,提高到新结构的640 V. 为了获得与实际测试结果一致的击穿曲线,本文在GaN缓冲层中设定了一定浓度的受主型缺陷,通过仿真分析验证了国际上外延GaN缓冲层时掺入受主型离子的原因,并通过仿真分析获得了与实际测试结果一致的击穿曲线.
    • 基金项目: 国家重点基础研究发展计划(批准号:2014CB339900)、国家自然科学基金重点项目(批准号:61234006)和国家自然科学基金青年科学基金(批准号:61106076)资助的课题.
    [1]

    Kamath A, Patil T, Adari R, Bhattacharya I, Ganguly S, Aldhaheri R W, Hussain M A, Dipankar Saha 2012 IEEE Electron Device Lett. 33 1690

    [2]

    Hidetoshi Ishida, Daisuke Shibata, Manabu Yanagihara, Yasuhiro Uemoto, Hisayoshi Matsuo, Tetsuzo Ueda, Tsuyaoshi Tanaka, Daisuke Ueda 2008 IEEE Transactions on Electron Devices 29 1087

    [3]

    Tongde Huang, Xueliang Zhu, Ka Ming Wong, Kei May Lau 2012 IEEE Electron Device Lett. 33 212

    [4]

    Corrion A L, Poblenz C, Wu F, Speck J S 2008 Journal of Appl Phy 130 093529-1

    [5]

    Hidetoshi I, Daisuke S, Manabu Y, Yasuhiro U, Hisayoshi M, Tetsuzo U, Tsuyoshi T, Daisuke U 2008 IEEE Electron Device Lett. 29 1087

    [6]

    Chunhua Zhou, Qimeng Jiang, Sen Huang, Chen K J 2012 IEEE Electron Device Lett. 33 1132

    [7]

    Corrion A L, Poblenz C, Wu F, Speck J S 2008 Journal of Appl. Phys. 130 093529

    [8]

    Lee J H, Yoo J K, Kang H S, Lee J H 2012 IEEE Electron Device Lett. 33 1171

    [9]

    Lee H S, Daniel Piedra, Min Sun, Xiang Gao, Shiping Guo, Tomas Palacios 2012 IEEE Electron Device Lett. 33 982

    [10]

    Duan B X, Yang Y T 2012 Sci. China Inf. Sci. 55 473

    [11]

    Duan B X, Yang Y T 2012 Micro & Nano Letter 7 9

    [12]

    Subramaniam Arulkumaran, Takashi Egawa, Lawrence Selvaraj, Hiroyasu Ishikawa 2006 Japanese Jouranl of Applied Physics 45 L220

    [13]

    Benbakhti B, Rousseau M, De Jaeger J C 2007 Microelectronics Jouranl 38 7

    [14]

    Jha S, Jelenkovic E V, Pejovic M M, Ristic G S, Pejovic M, Tong K Y, Surya C, Bello I, Zhang W J 2009 Microelectronic Engineering 86 37

    [15]

    Arulkumaran S, Liu Z H, Ng G I, Cheong W C, Zeng R, Bu J, Wang H, Radhakrishnan K, Tan C L 2007 Thin Solid Films. 515 4517

    [16]

    Chen X B, Johnny K O S 2001 IEEE Transactions on Electron Devices 48 344

    [17]

    Duan B X, Zhang B, Li Z J 2006 IEEE Electron Device Lett. 27 377

    [18]

    Duan B X, Yang Y T, Zhang B, Hong X F 2009 IEEE Electron Device Lett. 30 1329

    [19]

    Duan B X, Yang Y T, Zhang B 2009 IEEE Electron Device Lett. 30 305

    [20]

    Duan B X, Yang Y T 2011 IEEE TRANSACTIONS ON Electron Devices 58 2057

    [21]

    Duan B X, Yang Y T, Zhang B 2010 Solid-State Electronics 54 685

    [22]

    Duan B X, Yang Y T, Chen K J 2012 Acta Phys. Sin. 61 247302

    [23]

    Duan B X, Yang Y T, Kevin J. Chen 2012 Acta Phys. Sin. 61 227302

    [24]

    Udrea F, Popescu A, Milne W I 1998 Electronics Letters 34 808

    [25]

    Smorchkova I P, Elsass C R, Ibbetson J P, Heying B, Fini P, DenBaars S P, Speck J S, Mishra U K 1999 Journal of Applied Physics 86 4520

    [26]

    Yifei Zhang, Smorchkova I P, Elsass C R, Stacia Keller, Ibbetson J P, Jasprit Singh 2000 Appl. Phys. Lett. 87 7981

    [27]

    Ibbetson J P, Fini P T, Ness K D, DenBaars S P, Speck J S, Mishra U K 2000 Appl. Phys. Lett. 77 250

    [28]

    Heikman S, Keller S, DenBaars S P, Mishra U K 2002 Appl. Phys. Lett. 81 439

    [29]

    Tang H, Webb J B, Bardwell J A, Raymond S, Salzman J, Uzan-Saguy C 2001 Appl. Phys. Lett. 78 757

    [30]

    Webb J B, Tang H, Rolfe S, Bardwell J A 1999 Appl. Phys. Lett. 75 953

    [31]

    Katzer D S, Storm D F, Binari S C, Roussos J A, Shanabrook B V, Glaser E R 2003 J. Cryst. Growth. 251 481

    [32]

    Poblenz C, Waltereit P, Rajan S, Heikman S, Mishra U K, Speck J S 2004 J. Vac. Sci. Technol. B 22 114

  • [1]

    Kamath A, Patil T, Adari R, Bhattacharya I, Ganguly S, Aldhaheri R W, Hussain M A, Dipankar Saha 2012 IEEE Electron Device Lett. 33 1690

    [2]

    Hidetoshi Ishida, Daisuke Shibata, Manabu Yanagihara, Yasuhiro Uemoto, Hisayoshi Matsuo, Tetsuzo Ueda, Tsuyaoshi Tanaka, Daisuke Ueda 2008 IEEE Transactions on Electron Devices 29 1087

    [3]

    Tongde Huang, Xueliang Zhu, Ka Ming Wong, Kei May Lau 2012 IEEE Electron Device Lett. 33 212

    [4]

    Corrion A L, Poblenz C, Wu F, Speck J S 2008 Journal of Appl Phy 130 093529-1

    [5]

    Hidetoshi I, Daisuke S, Manabu Y, Yasuhiro U, Hisayoshi M, Tetsuzo U, Tsuyoshi T, Daisuke U 2008 IEEE Electron Device Lett. 29 1087

    [6]

    Chunhua Zhou, Qimeng Jiang, Sen Huang, Chen K J 2012 IEEE Electron Device Lett. 33 1132

    [7]

    Corrion A L, Poblenz C, Wu F, Speck J S 2008 Journal of Appl. Phys. 130 093529

    [8]

    Lee J H, Yoo J K, Kang H S, Lee J H 2012 IEEE Electron Device Lett. 33 1171

    [9]

    Lee H S, Daniel Piedra, Min Sun, Xiang Gao, Shiping Guo, Tomas Palacios 2012 IEEE Electron Device Lett. 33 982

    [10]

    Duan B X, Yang Y T 2012 Sci. China Inf. Sci. 55 473

    [11]

    Duan B X, Yang Y T 2012 Micro & Nano Letter 7 9

    [12]

    Subramaniam Arulkumaran, Takashi Egawa, Lawrence Selvaraj, Hiroyasu Ishikawa 2006 Japanese Jouranl of Applied Physics 45 L220

    [13]

    Benbakhti B, Rousseau M, De Jaeger J C 2007 Microelectronics Jouranl 38 7

    [14]

    Jha S, Jelenkovic E V, Pejovic M M, Ristic G S, Pejovic M, Tong K Y, Surya C, Bello I, Zhang W J 2009 Microelectronic Engineering 86 37

    [15]

    Arulkumaran S, Liu Z H, Ng G I, Cheong W C, Zeng R, Bu J, Wang H, Radhakrishnan K, Tan C L 2007 Thin Solid Films. 515 4517

    [16]

    Chen X B, Johnny K O S 2001 IEEE Transactions on Electron Devices 48 344

    [17]

    Duan B X, Zhang B, Li Z J 2006 IEEE Electron Device Lett. 27 377

    [18]

    Duan B X, Yang Y T, Zhang B, Hong X F 2009 IEEE Electron Device Lett. 30 1329

    [19]

    Duan B X, Yang Y T, Zhang B 2009 IEEE Electron Device Lett. 30 305

    [20]

    Duan B X, Yang Y T 2011 IEEE TRANSACTIONS ON Electron Devices 58 2057

    [21]

    Duan B X, Yang Y T, Zhang B 2010 Solid-State Electronics 54 685

    [22]

    Duan B X, Yang Y T, Chen K J 2012 Acta Phys. Sin. 61 247302

    [23]

    Duan B X, Yang Y T, Kevin J. Chen 2012 Acta Phys. Sin. 61 227302

    [24]

    Udrea F, Popescu A, Milne W I 1998 Electronics Letters 34 808

    [25]

    Smorchkova I P, Elsass C R, Ibbetson J P, Heying B, Fini P, DenBaars S P, Speck J S, Mishra U K 1999 Journal of Applied Physics 86 4520

    [26]

    Yifei Zhang, Smorchkova I P, Elsass C R, Stacia Keller, Ibbetson J P, Jasprit Singh 2000 Appl. Phys. Lett. 87 7981

    [27]

    Ibbetson J P, Fini P T, Ness K D, DenBaars S P, Speck J S, Mishra U K 2000 Appl. Phys. Lett. 77 250

    [28]

    Heikman S, Keller S, DenBaars S P, Mishra U K 2002 Appl. Phys. Lett. 81 439

    [29]

    Tang H, Webb J B, Bardwell J A, Raymond S, Salzman J, Uzan-Saguy C 2001 Appl. Phys. Lett. 78 757

    [30]

    Webb J B, Tang H, Rolfe S, Bardwell J A 1999 Appl. Phys. Lett. 75 953

    [31]

    Katzer D S, Storm D F, Binari S C, Roussos J A, Shanabrook B V, Glaser E R 2003 J. Cryst. Growth. 251 481

    [32]

    Poblenz C, Waltereit P, Rajan S, Heikman S, Mishra U K, Speck J S 2004 J. Vac. Sci. Technol. B 22 114

  • [1] 袁嵩, 段宝兴, 袁小宁, 马建冲, 李春来, 曹震, 郭海军, 杨银堂. 阶梯AlGaN外延新型Al0.25Ga0.75N/GaNHEMTs器件实验研究. 物理学报, 2015, 64(23): 237302. doi: 10.7498/aps.64.237302
    [2] 郭亮良, 冯 倩, 郝 跃, 杨 燕. 高击穿电压的AlGaN/GaN FP-HEMT研究与分析. 物理学报, 2007, 56(5): 2895-2899. doi: 10.7498/aps.56.2895
    [3] 王 冲, 冯 倩, 郝 跃, 万 辉. AlGaN/GaN异质结Ni/Au肖特基表面处理及退火研究. 物理学报, 2006, 55(11): 6085-6089. doi: 10.7498/aps.55.6085
    [4] 段宝兴, 杨银堂, 陈敬. F离子注入新型Al0.25Ga0.75 N/GaN HEMT 器件耐压分析 . 物理学报, 2012, 61(22): 227302. doi: 10.7498/aps.61.227302
    [5] 魏 巍, 郝 跃, 冯 倩, 张进城, 张金凤. AlGaN/GaN场板结构高电子迁移率晶体管的场板尺寸优化分析. 物理学报, 2008, 57(4): 2456-2461. doi: 10.7498/aps.57.2456
    [6] 张进成, 郑鹏天, 董作典, 段焕涛, 倪金玉, 张金凤, 郝跃. 背势垒层结构对AlGaN/GaN双异质结载流子分布特性的影响. 物理学报, 2009, 58(5): 3409-3415. doi: 10.7498/aps.58.3409
    [7] 李 琦, 李肇基, 张 波. 表面注入P-top区double RESURF功率器件表面电场模型. 物理学报, 2007, 56(11): 6660-6665. doi: 10.7498/aps.56.6660
    [8] 段宝兴, 曹震, 袁小宁, 杨银堂. 具有N型缓冲层REBULF Super Junction LDMOS. 物理学报, 2014, 63(22): 227302. doi: 10.7498/aps.63.227302
    [9] 刘林杰, 岳远征, 张进城, 马晓华, 董作典, 郝跃. Al2O3绝缘栅AlGaN/GaN MOS-HEMT器件温度特性研究. 物理学报, 2009, 58(1): 536-540. doi: 10.7498/aps.58.536
    [10] 马骥刚, 马晓华, 张会龙, 曹梦逸, 张凯, 李文雯, 郭星, 廖雪阳, 陈伟伟, 郝跃. AlGaN/GaN高电子迁移率晶体管中kink效应的半经验模型. 物理学报, 2012, 61(4): 047301. doi: 10.7498/aps.61.047301
    [11] 任舰, 闫大为, 顾晓峰. AlGaN/GaN 高电子迁移率晶体管漏电流退化机理研究. 物理学报, 2013, 62(15): 157202. doi: 10.7498/aps.62.157202
    [12] 段宝兴, 杨银堂, Kevin J. Chen. 新型Si3N4层部分固定正电荷AlGaN/GaN HEMTs器件耐压分析. 物理学报, 2012, 61(24): 247302. doi: 10.7498/aps.61.247302
    [13] 刘静, 王琳倩, 黄忠孝. 基于凹槽结构抑制AlGaN/GaN高电子迁移率晶体管电流崩塌效应. 物理学报, 2019, 68(24): 248501. doi: 10.7498/aps.68.20191311
    [14] 张力, 林志宇, 罗俊, 王树龙, 张进成, 郝跃, 戴扬, 陈大正, 郭立新. 具有p-GaN岛状埋层耐压结构的横向AlGaN/GaN高电子迁移率晶体管. 物理学报, 2017, 66(24): 247302. doi: 10.7498/aps.66.247302
    [15] 董世剑, 郭红霞, 马武英, 吕玲, 潘霄宇, 雷志锋, 岳少忠, 郝蕊静, 琚安安, 钟向丽, 欧阳晓平. AlGaN/GaN高电子迁移率晶体管器件电离辐照损伤机理及偏置相关性研究. 物理学报, 2020, 69(7): 078501. doi: 10.7498/aps.69.20191557
    [16] 王冲, 全思, 张金凤, 郝跃, 冯倩, 陈军峰. AlGaN/GaN槽栅HEMT模拟与实验研究. 物理学报, 2009, 58(3): 1966-1970. doi: 10.7498/aps.58.1966
    [17] 唐文昕, 郝荣晖, 陈扶, 于国浩, 张宝顺. 1000 V p-GaN混合阳极AlGaN/GaN二极管. 物理学报, 2018, 67(19): 198501. doi: 10.7498/aps.67.20181208
    [18] 王冲, 全思, 马晓华, 郝跃, 张进城, 毛维. 增强型AlGaN/GaN高电子迁移率晶体管高温退火研究. 物理学报, 2010, 59(10): 7333-7337. doi: 10.7498/aps.59.7333
    [19] 段宝兴, 曹震, 袁嵩, 袁小宁, 杨银堂. 新型缓冲层分区电场调制横向双扩散超结功率器件. 物理学报, 2014, 63(24): 247301. doi: 10.7498/aps.63.247301
    [20] 朱彦旭, 曹伟伟, 徐晨, 邓叶, 邹德恕. GaN HEMT欧姆接触模式对电学特性的影响. 物理学报, 2014, 63(11): 117302. doi: 10.7498/aps.63.117302
  • 引用本文:
    Citation:
计量
  • 文章访问数:  850
  • PDF下载量:  470
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-03
  • 修回日期:  2013-11-28
  • 刊出日期:  2014-03-05

阶梯AlGaN外延新型Al0.25Ga0.75N/GaN HEMTs击穿特性分析

  • 1. 西安电子科技大学微电子学院宽禁带半导体材料与器件教育部重点实验室, 西安 710071
    基金项目: 

    国家重点基础研究发展计划(批准号:2014CB339900)、国家自然科学基金重点项目(批准号:61234006)和国家自然科学基金青年科学基金(批准号:61106076)资助的课题.

摘要: 为了优化AlGaN/GaN HEMTs器件表面电场,提高击穿电压,本文首次提出了一种新型阶梯AlGaN/GaN HEMTs结构. 新结构利用AlGaN/GaN异质结形成的2DEG浓度随外延AlGaN层厚度降低而减小的规律,通过减薄靠近栅边缘外延的AlGaN层,使沟道2DEG浓度分区,形成栅边缘低浓度2DEG区,低的2DEG使阶梯AlGaN交界出现新的电场峰,新电场峰的出现有效降低了栅边缘的高峰电场,优化了AlGaN/GaN HEMTs器件的表面电场分布,使器件击穿电压从传统结构的446 V,提高到新结构的640 V. 为了获得与实际测试结果一致的击穿曲线,本文在GaN缓冲层中设定了一定浓度的受主型缺陷,通过仿真分析验证了国际上外延GaN缓冲层时掺入受主型离子的原因,并通过仿真分析获得了与实际测试结果一致的击穿曲线.

English Abstract

参考文献 (32)

目录

    /

    返回文章
    返回