搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

正压大气环流中的曲面周期波和孤波

毛杰键 吴波 付敏 黄瑛 杨建荣 任博 刘萍

正压大气环流中的曲面周期波和孤波

毛杰键, 吴波, 付敏, 黄瑛, 杨建荣, 任博, 刘萍
PDF
导出引用
导出核心图
  • 大尺度正压大气环流的波动特征对理解气候变化具有重要的意义,而非线性浅水波方程组是描述大尺度正压大气环流的原始控制方程. 本文对线性方程的复变函数解,通过二次适当的移植,求得浅水波方程组的发展方程的扰动位势 的实变函数解,该实变函数解析解由基流项和波动项两部分组成. 其中基流由波数、波速、β效应、变形半径和时间的任意函数共同决定;波动项与β效应有关. 分析表明,在大尺度正压大气环流中扰动位势存在曲面的周期波和孤波的现象,周期波与孤波相互调制而呈现不稳定性;当多个周期孤波同时出现时,则彼此独立传播;扰动位势波动项中的时间任意函数对曲面周期孤波的波幅有调制作用,可控制波的产生、发展和消失. 所得结果对研究大气波动现象和气候变化具有一定的理论参考价值.
    • 基金项目: 江西省自然科学基金(批准号:2009GZW0026,2012BAB202008)、国家自然科学基金(批准号:11465015,11365017,11305106,11305031)和江西省教育厅科技落地项目(批准号:KJLD13086)资助的课题.
    [1]

    Vincent H C 2010 J. Hydro-Enviro. Res. 3 173

    [2]

    Callaghan T G, Forbes L K 2006 J. Comput. Phys. 217 845

    [3]

    Phillips N A 1959 Mon. Weather Rev. 87 333

    [4]

    Williamson D L, Drake J B, Hack J J, Jakob R, Swarztrauber P N 1992 J. Comput. Phys. 102 211

    [5]

    Thuburn J, Li Y 2000 Tellus A 52 181

    [6]

    Baines P G 1976 J. Fluid Mech. 73 193

    [7]

    Mao J J, Yang J R 2013 Acta Phys. Sin. 62 130205(in Chinese)[毛杰健, 杨建荣 2013 物理学报 62 130205]

    [8]

    Pinilla C, Chu V H 2008 J. Coastal Res. 52 207

    [9]

    He J R, Li H M 2011 Phys. Rev. E 83 066607

    [10]

    Yang J R, Mao J J 2008 Commun. Theor. Phys. 49 22

    [11]

    Yang J R, Mao J J 2008 Chin. Phys. B 17 4337

    [12]

    Yang J R, Mao J J, Tang X Y 2013 Chin. Phys. B 22 115203

    [13]

    Mao J J, Yang J R 2005 Acta Phys. Sin. 54 4999(in Chinese)[毛杰健, 杨建荣 2005 物理学报 54 4999]

    [14]

    Mao J J, Yang J R 2006 Chin. Phys. 15 2804

    [15]

    Mao J J, Yang J R 2007 Acta Phys. Sin. 56 5049(in Chinese)[毛杰健, 杨建荣 2007 物理学报 56 5049]

    [16]

    Lou S Y, Jia M, Huang F, Tang X Y 2007 J. Theor. Phys. 46 2082

    [17]

    Lou S Y, Jia M, Tang X Y, Huang F 2007 Phys. Rev. E 75 056318

    [18]

    Tang X Y, Shukla P K 2007 J. Phys. A: Math. Theor. 40 5921

    [19]

    Tang X Y, Shukla P K 2007 Phys. Scr. 76 665

    [20]

    Lou S Y, Tang X Y, Lin J 2000 J. Math. Phys. 41 8286

    [21]

    Lou S Y, Li Y Q, Tang X Y 2013 Chin. Phys. Lett. 30 080202

    [22]

    Luo D H 2005 J. Atmos. Sci. 62 3202

    [23]

    Huang F, Tang X Y, Lou S Y, Lu C H 2007 J. Atmos. Sci. 64 52

    [24]

    Chow K W 2002 Wave Motion 35 71

    [25]

    Ma W X 2002 Phys. Lett. A 301 35

    [26]

    Luo D H 1996 Wave Motion 24 315

    [27]

    Steinbock O, Zykov V S, Muller S C 1993 Phys. Rev. E 48 3295

    [28]

    Gao X, Zhang H, Zykov V, Bodenschatz E 2014 New J. Phys. 16 033012

    [29]

    Barboza R, Bortolozzo U, Assanto G, Vidal-Henriquez E, Clerc M G, Residori S 2012 Phys. Rev. Lett. 109 143901

    [30]

    Uchida S 1956 J. Aeronaut. Sci. 23 830

    [31]

    Mitria F G, Fellahb Z E A 2011 Ultrasonics 51 523

    [32]

    Zhao X F, Huang S X 2013 Acta Phys. Sin. 62 099204(in Chinese)[赵小峰, 黄思训 2013 物理学报 62 099204]

    [33]

    Karimian A, Yardim C, Gerstoft P, Hodgkiss W S, Barrios A E 2012 IEEE Trans. 60 4408

    [34]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computa Tional Ocean Acoustics (2nd Ed.) (New Yark: Springer-Verlag)

  • [1]

    Vincent H C 2010 J. Hydro-Enviro. Res. 3 173

    [2]

    Callaghan T G, Forbes L K 2006 J. Comput. Phys. 217 845

    [3]

    Phillips N A 1959 Mon. Weather Rev. 87 333

    [4]

    Williamson D L, Drake J B, Hack J J, Jakob R, Swarztrauber P N 1992 J. Comput. Phys. 102 211

    [5]

    Thuburn J, Li Y 2000 Tellus A 52 181

    [6]

    Baines P G 1976 J. Fluid Mech. 73 193

    [7]

    Mao J J, Yang J R 2013 Acta Phys. Sin. 62 130205(in Chinese)[毛杰健, 杨建荣 2013 物理学报 62 130205]

    [8]

    Pinilla C, Chu V H 2008 J. Coastal Res. 52 207

    [9]

    He J R, Li H M 2011 Phys. Rev. E 83 066607

    [10]

    Yang J R, Mao J J 2008 Commun. Theor. Phys. 49 22

    [11]

    Yang J R, Mao J J 2008 Chin. Phys. B 17 4337

    [12]

    Yang J R, Mao J J, Tang X Y 2013 Chin. Phys. B 22 115203

    [13]

    Mao J J, Yang J R 2005 Acta Phys. Sin. 54 4999(in Chinese)[毛杰健, 杨建荣 2005 物理学报 54 4999]

    [14]

    Mao J J, Yang J R 2006 Chin. Phys. 15 2804

    [15]

    Mao J J, Yang J R 2007 Acta Phys. Sin. 56 5049(in Chinese)[毛杰健, 杨建荣 2007 物理学报 56 5049]

    [16]

    Lou S Y, Jia M, Huang F, Tang X Y 2007 J. Theor. Phys. 46 2082

    [17]

    Lou S Y, Jia M, Tang X Y, Huang F 2007 Phys. Rev. E 75 056318

    [18]

    Tang X Y, Shukla P K 2007 J. Phys. A: Math. Theor. 40 5921

    [19]

    Tang X Y, Shukla P K 2007 Phys. Scr. 76 665

    [20]

    Lou S Y, Tang X Y, Lin J 2000 J. Math. Phys. 41 8286

    [21]

    Lou S Y, Li Y Q, Tang X Y 2013 Chin. Phys. Lett. 30 080202

    [22]

    Luo D H 2005 J. Atmos. Sci. 62 3202

    [23]

    Huang F, Tang X Y, Lou S Y, Lu C H 2007 J. Atmos. Sci. 64 52

    [24]

    Chow K W 2002 Wave Motion 35 71

    [25]

    Ma W X 2002 Phys. Lett. A 301 35

    [26]

    Luo D H 1996 Wave Motion 24 315

    [27]

    Steinbock O, Zykov V S, Muller S C 1993 Phys. Rev. E 48 3295

    [28]

    Gao X, Zhang H, Zykov V, Bodenschatz E 2014 New J. Phys. 16 033012

    [29]

    Barboza R, Bortolozzo U, Assanto G, Vidal-Henriquez E, Clerc M G, Residori S 2012 Phys. Rev. Lett. 109 143901

    [30]

    Uchida S 1956 J. Aeronaut. Sci. 23 830

    [31]

    Mitria F G, Fellahb Z E A 2011 Ultrasonics 51 523

    [32]

    Zhao X F, Huang S X 2013 Acta Phys. Sin. 62 099204(in Chinese)[赵小峰, 黄思训 2013 物理学报 62 099204]

    [33]

    Karimian A, Yardim C, Gerstoft P, Hodgkiss W S, Barrios A E 2012 IEEE Trans. 60 4408

    [34]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computa Tional Ocean Acoustics (2nd Ed.) (New Yark: Springer-Verlag)

  • [1] 蒋涛, 任金莲, 蒋戎戎, 陆伟刚. 基于局部加密纯无网格法非线性Cahn-Hilliard方程的模拟. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191829
    [2] 潘军廷, 张宏. 极化电场对可激发介质中螺旋波的控制. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191934
    [3] 吴雨明, 丁霄, 王任, 王秉中. 基于等效介质原理的宽角超材料吸波体的理论分析. 物理学报, 2020, 69(5): 054202. doi: 10.7498/aps.69.20191732
    [4] 王晓雷, 赵洁惠, 李淼, 姜光科, 胡晓雪, 张楠, 翟宏琛, 刘伟伟. 基于人工表面等离激元的厚度渐变镀银条带探针实现太赫兹波的紧聚焦和场增强. 物理学报, 2020, 69(5): 054201. doi: 10.7498/aps.69.20191531
    [5] 王瑜浩, 武保剑, 郭飚, 文峰, 邱昆. 基于非线性光纤环形镜的少模脉冲幅度调制再生器研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191858
    [6] 张梦, 姚若河, 刘玉荣. 纳米尺度金属-氧化物半导体场效应晶体管沟道热噪声模型. 物理学报, 2020, 69(5): 057101. doi: 10.7498/aps.69.20191512
    [7] 黄永峰, 曹怀信, 王文华. 共轭线性对称性及其对\begin{document}$ {\mathcal{P}}{\mathcal{T}} $\end{document}-对称量子理论的应用. 物理学报, 2020, 69(3): 030301. doi: 10.7498/aps.69.20191173
  • 引用本文:
    Citation:
计量
  • 文章访问数:  328
  • PDF下载量:  437
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-27
  • 修回日期:  2014-05-18
  • 刊出日期:  2014-09-20

正压大气环流中的曲面周期波和孤波

  • 1. 上饶师范学院物理与电子系, 上饶 334001;
  • 2. 绍兴文理学院非线性科学研究所, 绍兴 312000;
  • 3. 电子科技大学中山学院电子与信息工程学院, 中山 528402
    基金项目: 

    江西省自然科学基金(批准号:2009GZW0026,2012BAB202008)、国家自然科学基金(批准号:11465015,11365017,11305106,11305031)和江西省教育厅科技落地项目(批准号:KJLD13086)资助的课题.

摘要: 大尺度正压大气环流的波动特征对理解气候变化具有重要的意义,而非线性浅水波方程组是描述大尺度正压大气环流的原始控制方程. 本文对线性方程的复变函数解,通过二次适当的移植,求得浅水波方程组的发展方程的扰动位势 的实变函数解,该实变函数解析解由基流项和波动项两部分组成. 其中基流由波数、波速、β效应、变形半径和时间的任意函数共同决定;波动项与β效应有关. 分析表明,在大尺度正压大气环流中扰动位势存在曲面的周期波和孤波的现象,周期波与孤波相互调制而呈现不稳定性;当多个周期孤波同时出现时,则彼此独立传播;扰动位势波动项中的时间任意函数对曲面周期孤波的波幅有调制作用,可控制波的产生、发展和消失. 所得结果对研究大气波动现象和气候变化具有一定的理论参考价值.

English Abstract

参考文献 (34)

目录

    /

    返回文章
    返回