搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

线性微波化学气相沉积制备SiNx薄膜的微结构及光学性能研究

张健 巴德纯 赵崇凌 刘坤 杜广煜

线性微波化学气相沉积制备SiNx薄膜的微结构及光学性能研究

张健, 巴德纯, 赵崇凌, 刘坤, 杜广煜
PDF
导出引用
导出核心图
  • 利用自主研发的线性微波化学气相沉积系统在不同微波功率、微波占空比、基片温度、特气比例条件下制备了SiNx薄膜. 通过扫描电子显微镜、椭圆偏振仪等表征测量技术, 研究了不同工艺参数对SiNx薄膜表面形貌、元素配比、折射率、沉积速度的影响, 并探讨了薄膜元素配比、折射率、沉积速度间的关系. 结果表明: 利用线性微波沉积技术, 不同工艺参数下制备的SiNx薄膜组成元素分布均匀, 同时具有平整的表面状态; 特气比例和微波占空比是影响薄膜折射率的最主要因素, 薄膜折射率在1.92–2.33之间连续可调; 微波功率、微波占空比、沉积温度、特气比例都对SiNx 薄膜沉积速度影响较大, 制备的SiNx薄膜最大沉积速度为135 nm·min-1.
    • 基金项目: 教育部博士点基金(批准号: 20120042110031)资助的课题.
    [1]

    Akira H, Toshiharu M, Toshikazu N, Shigehira M, Atsushi M, Hironobu U, Naoto M, Hideki M 2008 Thin Solid Films 516 3000

    [2]

    Swatowska B, Stapinski T 2008 Vacuum 82 942

    [3]

    Skordas S, Sirinakis G, Yu W, Wu D, Efstathiadis H, Kaloyeros A E 2000 Mater. Res. Soc. Symp. Proc. 109 606

    [4]

    Ding W Y, Xu J, Lu W Q, Deng X L, Dong C 2009 Acta Phys. Sin. 58 4109 (in Chinese) [丁万昱, 徐军, 陆文琪, 邓新绿, 董闯 2009 物理学报 58 4109]

    [5]

    Habermehl S 1998 J. Appl. Phys. 83 4672

    [6]

    Ding W Y, Xu J, Piao Y, Li Y Q, Gao P, Deng X L, Dong C 2005 Chin. Phys. Lett. 22 2332

    [7]

    Yohei O, Keisuke O, Takuya O, Hideki M 2008 Thin Solid Films 516 611

    [8]

    Kang S M, Yoon S G, Yoon D H 2008 Thin Solid Films 516 1405

    [9]

    Vargheese K D, Rao G M 2001 J. Vac. Sci. Technol. A 19 1336

    [10]

    Xu D, Zhu H, Yang L J, Yang Y J, Zheng Z H, Liu X H, Taniguchis, Shibatat 1995 Acta Metal. Sin. 31 164 (in Chinese) [徐东, 朱宏, 杨丽娟, 杨云洁, 郑志宏, 柳襄怀,谷口滋次,柴田俊夫 1995 金属学报 31 164]

    [11]

    Chen J F, Wu X Q, Wang D Q, Ding Z F, Ren Z X 1999 Acta Phys. Sin. 48 1309 (in Chinese) [陈俊芳, 吴先秋, 王德求, 丁振峰, 任兆杏 1999 物理学报 48 1309]

    [12]

    Yota J, Hander J, Saleh A A 2000 J. Vac. Sci. Technol. A 18 372

    [13]

    Ji A L, Ma L B, Liu W, Wang Y Q 2004 Acta Phys. Sin. 53 3818 (in Chinese) [纪爱玲, 马利波, 刘薇, 王永谦 2004 物理学报 53 3818]

    [14]

    Yu W, Li Y C, Ding W G, Zhang J Y, Yang Y B, Fu G S 2008 Acta Phys. Sin. 57 3661 (in Chinese) [于威, 李亚超, 丁文革, 张江用, 杨彦斌, 傅广生 2008 物理学报 57 3661]

    [15]

    Zaghloul U, Papaioannou G J, Wang H, Bhushan B, Coccetti F, Pons P 2011 Nanotechology 22 205708

    [16]

    Keita A S, Naciri A E, Delachat F, Carrada M, Ferblantier G, Slaoui A, Stchakovsky M 2011 Thin Solid Films 519 2870

  • [1]

    Akira H, Toshiharu M, Toshikazu N, Shigehira M, Atsushi M, Hironobu U, Naoto M, Hideki M 2008 Thin Solid Films 516 3000

    [2]

    Swatowska B, Stapinski T 2008 Vacuum 82 942

    [3]

    Skordas S, Sirinakis G, Yu W, Wu D, Efstathiadis H, Kaloyeros A E 2000 Mater. Res. Soc. Symp. Proc. 109 606

    [4]

    Ding W Y, Xu J, Lu W Q, Deng X L, Dong C 2009 Acta Phys. Sin. 58 4109 (in Chinese) [丁万昱, 徐军, 陆文琪, 邓新绿, 董闯 2009 物理学报 58 4109]

    [5]

    Habermehl S 1998 J. Appl. Phys. 83 4672

    [6]

    Ding W Y, Xu J, Piao Y, Li Y Q, Gao P, Deng X L, Dong C 2005 Chin. Phys. Lett. 22 2332

    [7]

    Yohei O, Keisuke O, Takuya O, Hideki M 2008 Thin Solid Films 516 611

    [8]

    Kang S M, Yoon S G, Yoon D H 2008 Thin Solid Films 516 1405

    [9]

    Vargheese K D, Rao G M 2001 J. Vac. Sci. Technol. A 19 1336

    [10]

    Xu D, Zhu H, Yang L J, Yang Y J, Zheng Z H, Liu X H, Taniguchis, Shibatat 1995 Acta Metal. Sin. 31 164 (in Chinese) [徐东, 朱宏, 杨丽娟, 杨云洁, 郑志宏, 柳襄怀,谷口滋次,柴田俊夫 1995 金属学报 31 164]

    [11]

    Chen J F, Wu X Q, Wang D Q, Ding Z F, Ren Z X 1999 Acta Phys. Sin. 48 1309 (in Chinese) [陈俊芳, 吴先秋, 王德求, 丁振峰, 任兆杏 1999 物理学报 48 1309]

    [12]

    Yota J, Hander J, Saleh A A 2000 J. Vac. Sci. Technol. A 18 372

    [13]

    Ji A L, Ma L B, Liu W, Wang Y Q 2004 Acta Phys. Sin. 53 3818 (in Chinese) [纪爱玲, 马利波, 刘薇, 王永谦 2004 物理学报 53 3818]

    [14]

    Yu W, Li Y C, Ding W G, Zhang J Y, Yang Y B, Fu G S 2008 Acta Phys. Sin. 57 3661 (in Chinese) [于威, 李亚超, 丁文革, 张江用, 杨彦斌, 傅广生 2008 物理学报 57 3661]

    [15]

    Zaghloul U, Papaioannou G J, Wang H, Bhushan B, Coccetti F, Pons P 2011 Nanotechology 22 205708

    [16]

    Keita A S, Naciri A E, Delachat F, Carrada M, Ferblantier G, Slaoui A, Stchakovsky M 2011 Thin Solid Films 519 2870

  • [1] 于 威, 刘丽辉, 侯海虹, 丁学成, 韩 理, 傅广生. 螺旋波等离子体增强化学气相沉积氮化硅薄膜. 物理学报, 2003, 52(3): 687-691. doi: 10.7498/aps.52.687
    [2] 尾形健一, 小池一步, 佐佐诚彦, 井上正崇, 矢野满明, 郑 凯, 王 琳, 李一凡, 龚桃荣, 简水生, 延凤平. 分子束外延法在Sapphire衬底上生长的Zn1-xMgxO薄膜折射率及厚度的测试. 物理学报, 2007, 56(7): 4127-4131. doi: 10.7498/aps.56.4127
    [3] 邹祥云, 苑进社, 蒋一祥. 氮化硅薄膜中硅纳米颗粒的形成机制研究. 物理学报, 2012, 61(14): 148106. doi: 10.7498/aps.61.148106
    [4] 江强, 毛秀娟, 周细应, 苌文龙, 邵佳佳, 陈明. 外加磁场对磁控溅射制备氮化硅陷光薄膜的影响. 物理学报, 2013, 62(11): 118103. doi: 10.7498/aps.62.118103
    [5] 花世群, 骆英. 发光光弹性涂层折射率测量方法. 物理学报, 2013, 62(5): 057801. doi: 10.7498/aps.62.057801
    [6] 史文俊, 易迎彦, 黎敏. 锗在吸收边附近的压力-折射率系数. 物理学报, 2016, 65(16): 167801. doi: 10.7498/aps.65.167801
    [7] 廖武刚, 曾祥斌, 文国知, 曹陈晨, 马昆鹏, 郑雅娟. 包含硅量子点的富硅SiNx 薄膜结构与发光特性. 物理学报, 2013, 62(12): 126801. doi: 10.7498/aps.62.126801
    [8] 李雪梅, 俞宇颖, 李英华, 张林, 马云, 汪小松, 付秋卫. 冲击压缩下Z-切石英的弹性响应特性和折射率. 物理学报, 2010, 59(4): 2691-2696. doi: 10.7498/aps.59.2691
    [9] 朱胜军, 王圣来, 刘琳, 王端良, 李伟东, 黄萍萍, 许心光. 大尺寸磷酸二氢钾晶体的折射率均一性研究. 物理学报, 2014, 63(10): 107701. doi: 10.7498/aps.63.107701
    [10] 彭博栋, 宋岩, 盛亮, 王培伟, 黑东炜, 赵军, 李阳, 张美, 李奎念. 辐射致折射率变化用于MeV级脉冲辐射探测的初步研究. 物理学报, 2016, 65(15): 157801. doi: 10.7498/aps.65.157801
    [11] 张旭平, 罗斌强, 种涛, 王桂吉, 谭福利, 赵剑衡, 孙承纬, 刘仓理. 磁驱动准等熵加载下Z切石英晶体的折射率. 物理学报, 2016, 65(4): 046201. doi: 10.7498/aps.65.046201
    [12] 杨健戈, 孙成林, 杨永波, 高淑琴, 姜永恒, 里佐威. 改变溶液折射率方法研究Fermi共振. 物理学报, 2012, 61(3): 037802. doi: 10.7498/aps.61.037802
    [13] 王小飞, 杨华军, 张戈, 张庆礼, 窦仁勤, 丁守军, 罗建乔, 刘文鹏, 孙贵花, 孙敦陆. 自准直法测GdTaO4晶体折射率. 物理学报, 2016, 65(8): 087801. doi: 10.7498/aps.65.087801
    [14] 王擎雷, 吴惠桢, 斯剑霄, 徐天宁, 夏明龙, 谢正生, 劳燕锋. Pb1-xMnxSe薄膜的光学特性. 物理学报, 2007, 56(8): 4950-4954. doi: 10.7498/aps.56.4950
    [15] 刘光友, 谭兴文, 姚金才, 王 振, 熊祖洪. 电化学制备薄黑硅抗反射膜. 物理学报, 2008, 57(1): 514-518. doi: 10.7498/aps.57.514
    [16] 吴英才, 顾铮. 激励表面等离子共振的金属薄膜最佳厚度分析. 物理学报, 2008, 57(4): 2295-2299. doi: 10.7498/aps.57.2295
    [17] 张 敏, 林国强, 董 闯, 闻立时. 脉冲偏压电弧离子镀TiO2薄膜的力学与光学性能. 物理学报, 2007, 56(12): 7300-7308. doi: 10.7498/aps.56.7300
    [18] 宗双飞, 沈祥, 徐铁峰, 陈昱, 王国祥, 陈芬, 李军, 林常规, 聂秋华. Ge20Sb15Se65薄膜的热致光学特性变化研究. 物理学报, 2013, 62(9): 096801. doi: 10.7498/aps.62.096801
    [19] 万新明, 贺天厚, 林 迪, 徐海清, 罗豪甦. 铁电单晶0.62Pb(Mg1/3Nb2/3)O3-0.38PbTiO3折射率的研究. 物理学报, 2003, 52(9): 2319-2323. doi: 10.7498/aps.52.2319
    [20] 邵建达, 范正修, 沈自才, 孔伟金, 刘世杰, 沈 建. 斜角入射沉积法制备渐变折射率薄膜的折射率分析. 物理学报, 2006, 55(10): 5157-5160. doi: 10.7498/aps.55.5157
  • 引用本文:
    Citation:
计量
  • 文章访问数:  758
  • PDF下载量:  191
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-04
  • 修回日期:  2014-10-29
  • 刊出日期:  2015-03-05

线性微波化学气相沉积制备SiNx薄膜的微结构及光学性能研究

  • 1. 东北大学机械工程及自动化学院, 沈阳 110004;
  • 2. 中国科学院沈阳科学仪器股份有限公司, 沈阳 110179
    基金项目: 

    教育部博士点基金(批准号: 20120042110031)资助的课题.

摘要: 利用自主研发的线性微波化学气相沉积系统在不同微波功率、微波占空比、基片温度、特气比例条件下制备了SiNx薄膜. 通过扫描电子显微镜、椭圆偏振仪等表征测量技术, 研究了不同工艺参数对SiNx薄膜表面形貌、元素配比、折射率、沉积速度的影响, 并探讨了薄膜元素配比、折射率、沉积速度间的关系. 结果表明: 利用线性微波沉积技术, 不同工艺参数下制备的SiNx薄膜组成元素分布均匀, 同时具有平整的表面状态; 特气比例和微波占空比是影响薄膜折射率的最主要因素, 薄膜折射率在1.92–2.33之间连续可调; 微波功率、微波占空比、沉积温度、特气比例都对SiNx 薄膜沉积速度影响较大, 制备的SiNx薄膜最大沉积速度为135 nm·min-1.

English Abstract

参考文献 (16)

目录

    /

    返回文章
    返回