搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硅衬底氮化镓基LED薄膜转移至柔性黏结层基板后其应力及发光性能变化的研究

黄斌斌 熊传兵 汤英文 张超宇 黄基锋 王光绪 刘军林 江风益

硅衬底氮化镓基LED薄膜转移至柔性黏结层基板后其应力及发光性能变化的研究

黄斌斌, 熊传兵, 汤英文, 张超宇, 黄基锋, 王光绪, 刘军林, 江风益
PDF
导出引用
  • 本文将硅(Si)衬底上外延生长的氮化镓(GaN)基发光二极管(LED)薄膜转移至含有柔性黏结层的基板上, 获得了不受衬底和支撑基板束缚的LED薄膜. 利用高分辨率X射线衍射仪(HRXRD)研究了薄膜转移前后的应力变化, 同时对其光致发光(PL)光谱的特性进行了研究. 结果表明: 硅衬底GaN基LED薄膜转移至柔性基板后, GaN受到的应力会由转移前巨大的张应力变为转移后微小的压应力, InGaN/GaN量子阱受到的压应力则增大; 尽管LED薄膜室温无损转移至柔性基板其InGaN阱层的In组分不会改变, 然而按照HRXRD倒易空间图谱通用计算方法会得出平均铟组发生了变化; GaN基LED薄膜从外延片转移至柔性基板时其PL谱会发生明显红移.
      通信作者: 熊传兵, chuanbingxiong@126.com
    • 基金项目: 国家自然科学基金(批准号: 51072076, 11364034, 61334001, 21406076, 61040060), 国家高技术研究发展计划(批准号: 2011AA03A101, 2012AA041002), 国家科技支撑计划(批准号: 2011BAE32B01)资助的课题.
    [1]

    McCluskey M D, Van de Walle C G, Master C P, Romano L T, Johnson N M 1998 Appl. Phys. Lett. 72 2725

    [2]

    Taniyasu Y, Kasu M, Makimoto T 2006 Nature 441 325

    [3]

    Pereira S, Correia M R, Monteiro T, Pereira E, Alves E, Sequeira A D, Franco N 2001 Appl. Phys. Lett. 78 2137

    [4]

    Kong H S, James I, Edmond J 2014 Phys. Status Solidi C 11 621

    [5]

    Okuno K, Oshio T, Shibata N, Honda Y, Yamaguchi M, Amano H 2014 Phys. Status Solidi C 11 722

    [6]

    Tang J J, Liang T, Shi W L, Zhang Q Q, Wang Y, Liu J, Xiong J J 2011 Appl. Surf. Sci. 257 8846

    [7]

    Perlin P, Mattos L, Shapiro N A, Kruger J, Wong W S, Sands T, Cheung N W, Weber E R 1999 J. Appl. Phys. 85 2385

    [8]

    Li Y L, Huang Y R, Lai Y H 2007 Appl. Phys. Lett. 91 181113

    [9]

    Huang B B, Xiong C B, Zhang C Y, Huang J F, Wang G X, Tang Y W, Quan Z J, Xu L Q, Zhang M, Wang L, Fang W Q, Liu J L, Jiang F Y 2014 Acta Phys. Sin. 63 217806 (in Chinese) [黄斌斌, 熊传兵, 张超宇, 黄基锋, 王光绪, 汤英文, 全知觉, 徐龙权, 张萌, 王立, 方文卿, 刘军林, 江风益 2014 物理学报 63 217806]

    [10]

    Park J, Goto T, Yao T, Lee S, Cho M 2013 J. Phys. D: Appl. Phys. 46 155104

    [11]

    Zhao D G, Xu S J, Xie M H, Tong S Y, Hui Y 2003 Appl. Phys. Lett. 83 677

    [12]

    Wong W S, Sands T, Cheung N W, Kneissl M, Bour D P, Mei P, Romano L T, Johnson N M 1999 Appl. Phys. Lett. 75 1360

    [13]

    Stach E A, Kelsch M, Nelson E, Wong W S, Sands T, Cheung N W 2000 Appl. Phys. Lett. 77 1819

    [14]

    Mo C L, Fang W Q, Pu Y, Liu H C, Jiang F 2005 J. Cryst. Growth 285 312

    [15]

    Xiong C B, Jiang F Y, Fang W Q, Wang L, Mo C L 2008 Acta Phys. Sin. 57 3176 (in Chinese) [熊传兵, 江风益, 方文卿, 王立, 莫春兰 2008 物理学报 57 3176]

    [16]

    Xiong Y J, Zhang M, Xiong C B, Xiao Z H, Wang G X, Wang Y M, Jiang F Y 2010 Chin. J. Lumin. 31 531 (in Chinese) [熊贻婧, 张萌, 熊传兵, 肖宗湖, 王光绪, 汪延明, 江风益 2010 发光学报 31 531]

    [17]

    Moram M A, Vickers M E 2009 Rep. Prog. Phys. 72 036502

    [18]

    Paszkowicz W 1999 Powder Diffr. 14 258

    [19]

    Ishikawa H, Zhao G Y, Nakada N, Egawa T, Jimbo T, Umeno M 1999 Jpn. J. Appl. Phys. 38 L492

    [20]

    Bläsing J, Reiher A, Dadgar A, Diez A, Krost A 2002 Appl. Phys. Lett. 81 2722

    [21]

    Wu M F, Zhou S Q, Yao S D, Zhao Q, Vantomme A 2004 J. Vac. Sci. Technol. B 22 921

    [22]

    Roesener T, Klinger V, Weuffen C, Lackner D, Dimroth F 2013 J. Cryst. Growth 368 21

    [23]

    Dobrovolskas D, Vaitkevičius A, Mickevičius J, Tuna Ö, Giesen C, Heuken M, Tamulaitis G 2013 J. Appl. Phys. 114 163516

    [24]

    Pereira S, Correia M R, Pereira E, O'Donnell K P, Alves E, Sequeira A D, Franco N, Watson I M, Deatcher C J 2002 Appl. Phys. Lett. 80 3913

    [25]

    Detchprohm T, Hiramatsu K, Itoh K, Akasaki I 1992 Jpn. J. Appl. Phys. 31 L1454

    [26]

    Wright A F 1997 J. Appl. Phys. 82 2833

    [27]

    Wu M, Zhang B S, Chen J, Liu J P, Shen X M, Zhao D G, Zhang J C, Wang J F, Li N, Jin R Q, Zhu J J, Yang H 2004 J. Cryst. Growth 260 331

    [28]

    Tawfik W Z, Song J, Lee J J, Ha J S, Ryu S W, Choi H S, Ryu B, Lee J K 2013 Appl. Surf. Sci. 283 727

  • [1]

    McCluskey M D, Van de Walle C G, Master C P, Romano L T, Johnson N M 1998 Appl. Phys. Lett. 72 2725

    [2]

    Taniyasu Y, Kasu M, Makimoto T 2006 Nature 441 325

    [3]

    Pereira S, Correia M R, Monteiro T, Pereira E, Alves E, Sequeira A D, Franco N 2001 Appl. Phys. Lett. 78 2137

    [4]

    Kong H S, James I, Edmond J 2014 Phys. Status Solidi C 11 621

    [5]

    Okuno K, Oshio T, Shibata N, Honda Y, Yamaguchi M, Amano H 2014 Phys. Status Solidi C 11 722

    [6]

    Tang J J, Liang T, Shi W L, Zhang Q Q, Wang Y, Liu J, Xiong J J 2011 Appl. Surf. Sci. 257 8846

    [7]

    Perlin P, Mattos L, Shapiro N A, Kruger J, Wong W S, Sands T, Cheung N W, Weber E R 1999 J. Appl. Phys. 85 2385

    [8]

    Li Y L, Huang Y R, Lai Y H 2007 Appl. Phys. Lett. 91 181113

    [9]

    Huang B B, Xiong C B, Zhang C Y, Huang J F, Wang G X, Tang Y W, Quan Z J, Xu L Q, Zhang M, Wang L, Fang W Q, Liu J L, Jiang F Y 2014 Acta Phys. Sin. 63 217806 (in Chinese) [黄斌斌, 熊传兵, 张超宇, 黄基锋, 王光绪, 汤英文, 全知觉, 徐龙权, 张萌, 王立, 方文卿, 刘军林, 江风益 2014 物理学报 63 217806]

    [10]

    Park J, Goto T, Yao T, Lee S, Cho M 2013 J. Phys. D: Appl. Phys. 46 155104

    [11]

    Zhao D G, Xu S J, Xie M H, Tong S Y, Hui Y 2003 Appl. Phys. Lett. 83 677

    [12]

    Wong W S, Sands T, Cheung N W, Kneissl M, Bour D P, Mei P, Romano L T, Johnson N M 1999 Appl. Phys. Lett. 75 1360

    [13]

    Stach E A, Kelsch M, Nelson E, Wong W S, Sands T, Cheung N W 2000 Appl. Phys. Lett. 77 1819

    [14]

    Mo C L, Fang W Q, Pu Y, Liu H C, Jiang F 2005 J. Cryst. Growth 285 312

    [15]

    Xiong C B, Jiang F Y, Fang W Q, Wang L, Mo C L 2008 Acta Phys. Sin. 57 3176 (in Chinese) [熊传兵, 江风益, 方文卿, 王立, 莫春兰 2008 物理学报 57 3176]

    [16]

    Xiong Y J, Zhang M, Xiong C B, Xiao Z H, Wang G X, Wang Y M, Jiang F Y 2010 Chin. J. Lumin. 31 531 (in Chinese) [熊贻婧, 张萌, 熊传兵, 肖宗湖, 王光绪, 汪延明, 江风益 2010 发光学报 31 531]

    [17]

    Moram M A, Vickers M E 2009 Rep. Prog. Phys. 72 036502

    [18]

    Paszkowicz W 1999 Powder Diffr. 14 258

    [19]

    Ishikawa H, Zhao G Y, Nakada N, Egawa T, Jimbo T, Umeno M 1999 Jpn. J. Appl. Phys. 38 L492

    [20]

    Bläsing J, Reiher A, Dadgar A, Diez A, Krost A 2002 Appl. Phys. Lett. 81 2722

    [21]

    Wu M F, Zhou S Q, Yao S D, Zhao Q, Vantomme A 2004 J. Vac. Sci. Technol. B 22 921

    [22]

    Roesener T, Klinger V, Weuffen C, Lackner D, Dimroth F 2013 J. Cryst. Growth 368 21

    [23]

    Dobrovolskas D, Vaitkevičius A, Mickevičius J, Tuna Ö, Giesen C, Heuken M, Tamulaitis G 2013 J. Appl. Phys. 114 163516

    [24]

    Pereira S, Correia M R, Pereira E, O'Donnell K P, Alves E, Sequeira A D, Franco N, Watson I M, Deatcher C J 2002 Appl. Phys. Lett. 80 3913

    [25]

    Detchprohm T, Hiramatsu K, Itoh K, Akasaki I 1992 Jpn. J. Appl. Phys. 31 L1454

    [26]

    Wright A F 1997 J. Appl. Phys. 82 2833

    [27]

    Wu M, Zhang B S, Chen J, Liu J P, Shen X M, Zhao D G, Zhang J C, Wang J F, Li N, Jin R Q, Zhu J J, Yang H 2004 J. Cryst. Growth 260 331

    [28]

    Tawfik W Z, Song J, Lee J J, Ha J S, Ryu S W, Choi H S, Ryu B, Lee J K 2013 Appl. Surf. Sci. 283 727

  • [1] 李水清, 汪莱, 韩彦军, 罗毅, 邓和清, 丘建生, 张洁. 氮化镓基发光二极管结构中粗化 p型氮化镓层的新型生长方法. 物理学报, 2011, 60(9): 098107. doi: 10.7498/aps.60.098107
    [2] 刘乃鑫, 王怀兵, 刘建平, 牛南辉, 韩 军, 沈光地. p型氮化镓的低温生长及发光二极管器件的研究. 物理学报, 2006, 55(3): 1424-1429. doi: 10.7498/aps.55.1424
    [3] 张超宇, 熊传兵, 汤英文, 黄斌斌, 黄基锋, 王光绪, 刘军林, 江风益. 图形硅衬底GaN基发光二极管薄膜去除衬底及AlN缓冲层后单个图形内微区发光及 应力变化的研究. 物理学报, 2015, 64(18): 187801. doi: 10.7498/aps.64.187801
    [4] 于 威, 李亚超, 丁文革, 张江勇, 杨彦斌, 傅广生. 氮化硅薄膜中纳米非晶硅颗粒的键合结构及光致发光. 物理学报, 2008, 57(6): 3661-3665. doi: 10.7498/aps.57.3661
    [5] 程赛, 吕惠民, 石振海, 崔静雅. 碳泡沫衬底上氮化铝纳米线的生长及其光致发光特性研究. 物理学报, 2012, 61(12): 126201. doi: 10.7498/aps.61.126201
    [6] 谢飞, 臧航, 刘方, 何欢, 廖文龙, 黄煜. 氮化镓在不同中子辐照环境下的位移损伤模拟研究. 物理学报, 2020, 69(19): 192401. doi: 10.7498/aps.69.20200064
    [7] 李炳乾, 郑同场, 夏正浩. GaN基蓝光发光二极管正向电压温度特性研究. 物理学报, 2009, 58(10): 7189-7193. doi: 10.7498/aps.58.7189
    [8] 邢艳辉, 韩军, 邓军, 李建军, 徐晨, 沈光地. p型GaN低温粗化提高发光二极管特性. 物理学报, 2010, 59(2): 1233-1236. doi: 10.7498/aps.59.1233
    [9] 刘木林, 闵秋应, 叶志清. 硅衬底InGaN/GaN基蓝光发光二极管droop效应的研究. 物理学报, 2012, 61(17): 178503. doi: 10.7498/aps.61.178503
    [10] 沈光地, 张剑铭, 邹德恕, 徐 晨, 顾晓玲. 大功率GaN基发光二极管的电流扩展效应及电极结构优化研究. 物理学报, 2008, 57(1): 472-476. doi: 10.7498/aps.57.472
    [11] 王光绪, 陶喜霞, 熊传兵, 刘军林, 封飞飞, 张萌, 江风益. 牺牲Ni退火对硅衬底GaN基发光二极管p型接触影响的研究. 物理学报, 2011, 60(7): 078503. doi: 10.7498/aps.60.078503
    [12] 毛清华, 刘军林, 全知觉, 吴小明, 张萌, 江风益. p型层结构与掺杂对GaInN发光二极管正向电压温度特性的影响. 物理学报, 2015, 64(10): 107801. doi: 10.7498/aps.64.107801
    [13] 封波, 邓彪, 刘乐功, 李增成, 冯美鑫, 赵汉民, 孙钱. 等离子体表面处理对硅衬底GaN基蓝光发光二极管内置n型欧姆接触的影响. 物理学报, 2017, 66(4): 047801. doi: 10.7498/aps.66.047801
    [14] 时强, 李路平, 张勇辉, 张紫辉, 毕文刚. GaN/InxGa1-xN型最后一个量子势垒对发光二极管内量子效率的影响. 物理学报, 2017, 66(15): 158501. doi: 10.7498/aps.66.158501
    [15] 张小东, 林德旭, 李公平, 尤 伟, 张利民, 张 宇, 刘正民. 离子注入n型GaN光致发光谱中宽黄光发射带研究. 物理学报, 2006, 55(10): 5487-5493. doi: 10.7498/aps.55.5487
    [16] 王健, 谢自力, 张荣, 张韵, 刘斌, 陈鹏, 韩平. InN的光致发光特性研究. 物理学报, 2013, 62(11): 117802. doi: 10.7498/aps.62.117802
    [17] 李素梅, 宋淑梅, 吕英波, 王爱芳, 吴爱玲, 郑卫民. 量子限制受主的光致发光研究. 物理学报, 2009, 58(7): 4936-4940. doi: 10.7498/aps.58.4936
    [18] 唐 斌, 邓 宏, 税正伟, 韦 敏, 陈金菊, 郝 昕. 掺AlZnO纳米线阵列的光致发光特性研究. 物理学报, 2007, 56(9): 5176-5179. doi: 10.7498/aps.56.5176
    [19] 张喜田, 肖芝燕, 张伟力, 高 红, 王玉玺, 刘益春, 张吉英, 许 武. 高质量纳米ZnO薄膜的光致发光特性研究. 物理学报, 2003, 52(3): 740-744. doi: 10.7498/aps.52.740
    [20] 黄凯, 王思慧, 施毅, 秦国毅, 张荣, 郑有炓. 内电场对纳米硅光致发光谱的影响. 物理学报, 2004, 53(4): 1236-1242. doi: 10.7498/aps.53.1236
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1385
  • PDF下载量:  187
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-02-14
  • 修回日期:  2015-05-05
  • 刊出日期:  2015-09-05

硅衬底氮化镓基LED薄膜转移至柔性黏结层基板后其应力及发光性能变化的研究

  • 1. 南昌大学国家硅基LED工程技术研究中心, 南昌 330047;
  • 2. 闽南师范大学LED光源与照明研究中心, 漳州 363000
  • 通信作者: 熊传兵, chuanbingxiong@126.com
    基金项目: 

    国家自然科学基金(批准号: 51072076, 11364034, 61334001, 21406076, 61040060), 国家高技术研究发展计划(批准号: 2011AA03A101, 2012AA041002), 国家科技支撑计划(批准号: 2011BAE32B01)资助的课题.

摘要: 本文将硅(Si)衬底上外延生长的氮化镓(GaN)基发光二极管(LED)薄膜转移至含有柔性黏结层的基板上, 获得了不受衬底和支撑基板束缚的LED薄膜. 利用高分辨率X射线衍射仪(HRXRD)研究了薄膜转移前后的应力变化, 同时对其光致发光(PL)光谱的特性进行了研究. 结果表明: 硅衬底GaN基LED薄膜转移至柔性基板后, GaN受到的应力会由转移前巨大的张应力变为转移后微小的压应力, InGaN/GaN量子阱受到的压应力则增大; 尽管LED薄膜室温无损转移至柔性基板其InGaN阱层的In组分不会改变, 然而按照HRXRD倒易空间图谱通用计算方法会得出平均铟组发生了变化; GaN基LED薄膜从外延片转移至柔性基板时其PL谱会发生明显红移.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回