搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于脉冲方法的超短栅长GaN基高电子迁移率晶体管陷阱效应机理

周幸叶 吕元杰 谭鑫 王元刚 宋旭波 何泽召 张志荣 刘庆彬 韩婷婷 房玉龙 冯志红

基于脉冲方法的超短栅长GaN基高电子迁移率晶体管陷阱效应机理

周幸叶, 吕元杰, 谭鑫, 王元刚, 宋旭波, 何泽召, 张志荣, 刘庆彬, 韩婷婷, 房玉龙, 冯志红
PDF
导出引用
导出核心图
  • 陷阱效应导致的电流崩塌是制约GaN基微波功率电子器件性能提高的一个重要因素,研究深能级陷阱行为对材料生长和器件开发具有非常重要的意义.随着器件频率的提升,器件尺寸不断缩小,对小尺寸器件中深能级陷阱的表征变得越发困难.本文制备了超短栅长(Lg=80 nm)的AlGaN/GaN金属氧化物半导体高电子迁移率晶体管(MOSHEMT),并基于脉冲I-V测试和二维数值瞬态仿真对器件的动态特性进行了深入研究,分析了深能级陷阱对AlGaN/GaN MOSHEMT器件动态特性的影响以及相关陷阱效应的内在物理机制.结果表明,AlGaN/GaN MOSHEMT器件的电流崩塌随着栅极静态偏置电压的增加呈非单调变化趋势,这是由栅漏电注入和热电子注入两种陷阱机制共同作用的结果.根据研究结果推断,可通过改善栅介质的质量以减小栅漏电或提高外延材料质量以减少缺陷密度等措施达到抑制陷阱效应的目的,从而进一步抑制电流崩塌.
      通信作者: 吕元杰, yuanjielv@163.com
    • 基金项目: 国家自然科学基金(批准号:61604137,61674130)资助的课题.
    [1]

    Pengelly R S, Wood S M, Milligan J W, Sheppard S T, Pribble W L 2012 IEEE Trans. Microw. Theory Tech. 60 1764

    [2]

    Pu Y, Pang L, Chen X J, Yuan T T, Luo W J, Liu X Y 2011 Chin. Phys. B 20 097305

    [3]

    Zhang C, Wang M, Xie B, Wen C P, Wang J, Hao Y, Wu W, Chen K J, Shen B 2015 IEEE Trans. Electron Dev. 62 2475

    [4]

    Meneghesso G, Verzellesi G, Pierobon R, Rampazzo F, Chini A, Mishra U K, Canali C, Zanoni E 2004 IEEE Trans. Electron Dev. 51 1554

    [5]

    Tirado J M, Sanchez-Rojas J L, Izpura J I 2007 IEEE Trans. Electron Dev. 54 410

    [6]

    Wang M, Yan D, Zhang C, Xie B, Wen C P, Wang J, Hao Y, Wu W, Shen B 2014 IEEE Electron Dev. Lett. 35 1094

    [7]

    Meneghini M, Rossetto I, Bisi D, Stocco A, Chini A, Pantellini A, Lanzieri C, Nanni A, Meneghesso G, Zanoni E 2014 IEEE Trans. Electron Dev. 61 4070

    [8]

    Bisi D, Meneghini M, Santi C, Chini A, Dammann M, Brckner P, Mikulla M, Meneghesso G, Zanoni E 2013 IEEE Trans. Electron Dev. 60 3166

    [9]

    Braga N, Mickevicius R 2004 Appl. Phys. Lett. 85 4780

    [10]

    Chini A, Lecce V D, Esposto M, Meneghesso G, Zanoni E 2009 IEEE Electron Dev. Lett. 30 1021

    [11]

    Miccoli C, Martino V C, Reina S, Rinaudo S 2013 IEEE Electron Dev. Lett. 34 1121

    [12]

    Zhou X, Feng Z, Wang L, Wang Y, Lv Y, Dun S, Cai S 2014 Solid-State Electron. 100 15

    [13]

    Yu C H, Luo X D, Zhou W Z, Luo Q Z, Liu P S 2012 Acta Phys. Sin. 61 207301 (in Chinese)[余晨辉, 罗向东, 周文政, 罗庆洲, 刘培生 2012 物理学报 61 207301]

    [14]

    Gu J, Lu H, Wang Q 2011 Acta Phys. Sin. 60 077107 (in Chinese)[顾江, 鲁宏, 王强 2011 物理学报 60 077107]

    [15]

    Wang X D, Hu W D, Chen X S, Lu W 2012 IEEE Trans. Electron Dev. 59 1393

    [16]

    Hu W D, Chen X S, Quan Z J, Xia C S, Lu W, Ye P D 2006 J. Appl. Phys. 100 074501

    [17]

    Hu W D, Chen X S, Quan Z J, Xia C S, Lu W, Yuan H J 2006 Appl. Phys. Lett. 89 243501

    [18]

    Zhang G C, Feng S W, Zhou Z, Li J W, Guo C S 2011 Chin. Phys. B 20 027202

    [19]

    Zhang Y, Feng S, Zhu H, Zhang J, Deng B 2013 Microelectron. Reliab. 53 694

    [20]

    Kim S, Nah J, Jo I, Shahrjerdi D, Colombo L, Yao Z, Tutuc E, Banerjee S K 2009 Appl. Phys. Lett. 94 062107

    [21]

    Badmaev A, Che Y C, Li Z, Wang C, Zhou C W 2012 ACS Nano 6 3371

    [22]

    Tan X, Zhou X Y, Guo H Y, Gu G D, Wang Y G, Song X B, Yin J Y, L Y J, Feng Z H 2016 Chin. Phys. Lett. 33 098501

  • [1]

    Pengelly R S, Wood S M, Milligan J W, Sheppard S T, Pribble W L 2012 IEEE Trans. Microw. Theory Tech. 60 1764

    [2]

    Pu Y, Pang L, Chen X J, Yuan T T, Luo W J, Liu X Y 2011 Chin. Phys. B 20 097305

    [3]

    Zhang C, Wang M, Xie B, Wen C P, Wang J, Hao Y, Wu W, Chen K J, Shen B 2015 IEEE Trans. Electron Dev. 62 2475

    [4]

    Meneghesso G, Verzellesi G, Pierobon R, Rampazzo F, Chini A, Mishra U K, Canali C, Zanoni E 2004 IEEE Trans. Electron Dev. 51 1554

    [5]

    Tirado J M, Sanchez-Rojas J L, Izpura J I 2007 IEEE Trans. Electron Dev. 54 410

    [6]

    Wang M, Yan D, Zhang C, Xie B, Wen C P, Wang J, Hao Y, Wu W, Shen B 2014 IEEE Electron Dev. Lett. 35 1094

    [7]

    Meneghini M, Rossetto I, Bisi D, Stocco A, Chini A, Pantellini A, Lanzieri C, Nanni A, Meneghesso G, Zanoni E 2014 IEEE Trans. Electron Dev. 61 4070

    [8]

    Bisi D, Meneghini M, Santi C, Chini A, Dammann M, Brckner P, Mikulla M, Meneghesso G, Zanoni E 2013 IEEE Trans. Electron Dev. 60 3166

    [9]

    Braga N, Mickevicius R 2004 Appl. Phys. Lett. 85 4780

    [10]

    Chini A, Lecce V D, Esposto M, Meneghesso G, Zanoni E 2009 IEEE Electron Dev. Lett. 30 1021

    [11]

    Miccoli C, Martino V C, Reina S, Rinaudo S 2013 IEEE Electron Dev. Lett. 34 1121

    [12]

    Zhou X, Feng Z, Wang L, Wang Y, Lv Y, Dun S, Cai S 2014 Solid-State Electron. 100 15

    [13]

    Yu C H, Luo X D, Zhou W Z, Luo Q Z, Liu P S 2012 Acta Phys. Sin. 61 207301 (in Chinese)[余晨辉, 罗向东, 周文政, 罗庆洲, 刘培生 2012 物理学报 61 207301]

    [14]

    Gu J, Lu H, Wang Q 2011 Acta Phys. Sin. 60 077107 (in Chinese)[顾江, 鲁宏, 王强 2011 物理学报 60 077107]

    [15]

    Wang X D, Hu W D, Chen X S, Lu W 2012 IEEE Trans. Electron Dev. 59 1393

    [16]

    Hu W D, Chen X S, Quan Z J, Xia C S, Lu W, Ye P D 2006 J. Appl. Phys. 100 074501

    [17]

    Hu W D, Chen X S, Quan Z J, Xia C S, Lu W, Yuan H J 2006 Appl. Phys. Lett. 89 243501

    [18]

    Zhang G C, Feng S W, Zhou Z, Li J W, Guo C S 2011 Chin. Phys. B 20 027202

    [19]

    Zhang Y, Feng S, Zhu H, Zhang J, Deng B 2013 Microelectron. Reliab. 53 694

    [20]

    Kim S, Nah J, Jo I, Shahrjerdi D, Colombo L, Yao Z, Tutuc E, Banerjee S K 2009 Appl. Phys. Lett. 94 062107

    [21]

    Badmaev A, Che Y C, Li Z, Wang C, Zhou C W 2012 ACS Nano 6 3371

    [22]

    Tan X, Zhou X Y, Guo H Y, Gu G D, Wang Y G, Song X B, Yin J Y, L Y J, Feng Z H 2016 Chin. Phys. Lett. 33 098501

  • [1] 刘乃漳, 张雪冰, 姚若河. AlGaN/GaN 高电子迁移率器件外部边缘电容的物理模型. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191931
    [2] 张梦, 姚若河, 刘玉荣. 纳米尺度金属-氧化物半导体场效应晶体管沟道热噪声模型. 物理学报, 2020, 69(5): 057101. doi: 10.7498/aps.69.20191512
    [3] 卢超, 陈伟, 罗尹虹, 丁李利, 王勋, 赵雯, 郭晓强, 李赛. 纳米体硅鳍形场效应晶体管单粒子瞬态中的源漏导通现象研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191896
    [4] 周峰, 蔡宇, 邹德峰, 胡丁桐, 张亚静, 宋有建, 胡明列. 钛宝石飞秒激光器中孤子分子的内部动态探测. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191989
    [5] 翁明, 谢少毅, 殷明, 曹猛. 介质材料二次电子发射特性对微波击穿的影响. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200026
    [6] 朱肖丽, 胡耀垓, 赵正予, 张援农. 钡和铯释放的电离层扰动效应对比. 物理学报, 2020, 69(2): 029401. doi: 10.7498/aps.69.20191266
    [7] 梁晋洁, 高宁, 李玉红. 表面效应对铁\begin{document}${\left\langle 100 \right\rangle} $\end{document}间隙型位错环的影响. 物理学报, 2020, 69(3): 036101. doi: 10.7498/aps.69.20191379
    [8] 杨建刚, 胡春波, 朱小飞, 李悦, 胡旭, 邓哲. 粉末颗粒气力加注特性实验研究. 物理学报, 2020, 69(4): 048102. doi: 10.7498/aps.69.20191273
    [9] 张松然, 何代华, 涂华垚, 孙艳, 康亭亭, 戴宁, 褚君浩, 俞国林. HgCdTe薄膜的输运特性及其应力调控. 物理学报, 2020, 69(5): 057301. doi: 10.7498/aps.69.20191330
    [10] 任县利, 张伟伟, 伍晓勇, 吴璐, 王月霞. 高熵合金短程有序现象的预测及其对结构的电子、磁性、力学性质的影响. 物理学报, 2020, 69(4): 046102. doi: 10.7498/aps.69.20191671
    [11] 钟哲强, 张彬, 母杰, 王逍. 基于紧聚焦方式的阵列光束相干合成特性分析. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200034
    [12] 徐贤达, 赵磊, 孙伟峰. 石墨烯纳米网电导特性的能带机理第一原理. 物理学报, 2020, 69(4): 047101. doi: 10.7498/aps.69.20190657
    [13] 王艳, 徐进良, 李文, 刘欢. 超临界Lennard-Jones流体结构特性分子动力学研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191591
    [14] 吴美梅, 张超, 张灿, 孙倩倩, 刘玫. 三维金字塔立体复合基底表面增强拉曼散射特性. 物理学报, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191636
    [15] 刘祥, 米文博. Verwey相变处Fe3O4的结构、磁性和电输运特性. 物理学报, 2020, 69(4): 040505. doi: 10.7498/aps.69.20191763
    [16] 刘家合, 鲁佳哲, 雷俊杰, 高勋, 林景全. 气体压强对纳秒激光诱导空气等离子体特性的影响. 物理学报, 2020, 69(5): 057401. doi: 10.7498/aps.69.20191540
    [17] 尹玉明, 赵伶玲. 离子浓度及表面结构对岩石孔隙内水流动特性的影响. 物理学报, 2020, 69(5): 054701. doi: 10.7498/aps.69.20191742
    [18] 刘丽, 刘杰, 曾健, 翟鹏飞, 张胜霞, 徐丽君, 胡培培, 李宗臻, 艾文思. 快重离子辐照对YBa2Cu3O7-δ薄膜微观结构及载流特性的影响. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191914
    [19] 罗端, 惠丹丹, 温文龙, 李立立, 辛丽伟, 钟梓源, 吉超, 陈萍, 何凯, 王兴, 田进寿. 超紧凑型飞秒电子衍射仪的设计. 物理学报, 2020, 69(5): 052901. doi: 10.7498/aps.69.20191157
    [20] 方文玉, 张鹏程, 赵军, 康文斌. H, F修饰单层GeTe的电子结构与光催化性质. 物理学报, 2020, 69(5): 056301. doi: 10.7498/aps.69.20191391
  • 引用本文:
    Citation:
计量
  • 文章访问数:  241
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-18
  • 修回日期:  2018-05-07
  • 刊出日期:  2018-09-05

基于脉冲方法的超短栅长GaN基高电子迁移率晶体管陷阱效应机理

  • 1. 河北半导体研究所, 专用集成电路国家级重点实验室, 石家庄 050051
  • 通信作者: 吕元杰, yuanjielv@163.com
    基金项目: 

    国家自然科学基金(批准号:61604137,61674130)资助的课题.

摘要: 陷阱效应导致的电流崩塌是制约GaN基微波功率电子器件性能提高的一个重要因素,研究深能级陷阱行为对材料生长和器件开发具有非常重要的意义.随着器件频率的提升,器件尺寸不断缩小,对小尺寸器件中深能级陷阱的表征变得越发困难.本文制备了超短栅长(Lg=80 nm)的AlGaN/GaN金属氧化物半导体高电子迁移率晶体管(MOSHEMT),并基于脉冲I-V测试和二维数值瞬态仿真对器件的动态特性进行了深入研究,分析了深能级陷阱对AlGaN/GaN MOSHEMT器件动态特性的影响以及相关陷阱效应的内在物理机制.结果表明,AlGaN/GaN MOSHEMT器件的电流崩塌随着栅极静态偏置电压的增加呈非单调变化趋势,这是由栅漏电注入和热电子注入两种陷阱机制共同作用的结果.根据研究结果推断,可通过改善栅介质的质量以减小栅漏电或提高外延材料质量以减少缺陷密度等措施达到抑制陷阱效应的目的,从而进一步抑制电流崩塌.

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回