搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维泊松方程的遗传PSOR改进算法

彭武 何怡刚 方葛丰 樊晓腾

二维泊松方程的遗传PSOR改进算法

彭武, 何怡刚, 方葛丰, 樊晓腾
PDF
导出引用
  • 针对二维泊松方程在实际应用过程中几种常用方法存在计算量大、易发散、局部收敛等不足, 提出了一种改进算法.该算法基于并行超松弛迭代法,采用遗传算法对松弛因子进行全局寻优, 解决了超松弛迭代法求解泊松方程时最佳松弛因子难以确定的问题. 构建了多目标适应度函数,优化了遗传算子参数,分析了算法的计算量、计算时间与误差精度, 与传统方法进行了对比研究.结果表明:松弛因子对泊松方程求解的速度与精度影响显著; 改进算法能减少迭代次数,节省计算时间,加快方程的求解;算法适合于求解计算量较大、 精度要求较高的时域有限差分方程,而且精度要求越高,算法的性能越好,节省的时间也越多.
    • 基金项目: 国家杰出青年科学基金(批准号: 50925727)、 国家自然科学基金(批准号: 60876022, 61102039, 51107034)、 湖南省科技计划项目(批准号: 2011J4, 2011JK2023)、 国防预研重大项目(批准号: C1120110004)、广东省教育部产学研计划(批准号: 2009B090300196) 和中央高校基本科研业务费资助的课题.
    [1]

    Wang X Y, Zhang H M, Wang G Y, Song J J, Qin S S, Qu J T 2011 Acta Phys. Sin. 60 027102 (in Chinese) [王晓艳, 张鹤鸣, 王冠宇, 宋建军, 秦珊珊, 屈江涛 2011 物理学报 60 027102]

    [2]

    Shang Y, Huo B Z, Meng C N, Yuan J H 2010 Acta Phys. Sin. 59 8178 (in Chinese) [尚英, 霍丙忠, 孟春宁, 袁景和 2010 物理学报 59 8178]

    [3]

    Ji F Y, Zhang S L 2012 Acta Phys. Sin. 61 080202 (in Chinese) [吉飞宇, 张顺利 2012 物理学报 61 080202]

    [4]

    Ma J W, Yang H Z, Zhu Y P 2001 Acta Phys. Sin. 50 1415 (in Chinese) [马坚伟, 杨慧珠, 朱亚平 2001 物理学报 50 1415]

    [5]

    Liu S K, Fu Z T, Liu S D 2001 Phys. Lett. A 289 69

    [6]

    Kohno T, Kotakemori H, Nikia H 1997 Linear Algebra Appl. 267 113

    [7]

    Hadjidimos A 2000 Journal of Computational and Applied Mathematics 123 77

    [8]

    Smith B F, Bjorstad P E, Gropp W D 1996 Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations (Cambridge: Cambridge University Press) p124

    [9]

    Wang X B, Liang Z C, Wu Z S, 2012 Acta Phys. Sin. 61 124104 (in Chinese) [王晓冰, 梁子长, 吴振森 2012 物理学报 61 124104]

    [10]

    He J, Xu J Y, Yao X 2000 IEEE Trans on Evolutionary Computation 4 295

    [11]

    Dai D, Ma X K, Li F C, You Y 2002 Acta Phys. Sin. 51 2459 (in Chinese) [戴栋, 马西奎, 李富才, 尤勇 2002 物理学报 51 2459]

    [12]

    Zhao Z J, Zhen S L, Shang J N, Kong X Z 2007 Acta Phys. Sin. 56 6760 (in Chinese) [赵知劲, 郑仕链, 尚俊娜, 孔宪正 2007 物理学报 56 6760]

    [13]

    Dutta D, Dutta P, Sil J 2012 Proceedings of the 1st International Conference on Recent Advances in Information Technology, Dhanbad, India, March 15-17 2012 p548

    [14]

    Sweilam N H, Moharram H M, Ahmed S 2012 Proceedings of the 8th International Conference on Informatics and Systems, Cairo, Egypt, May 14-16, 2012 p78

    [15]

    Xu Q Y 2011 Proceedings of the 2011 Inernational Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, Beijing, China, Octorber 10-12, 2011 p295

    [16]

    Wang B Z 2002 Computational electromagnetic (Beijing: Science Press) p34 (in Chinese) [王秉中 2002 计算电磁学(北京:科学出版社) 第34页]

    [17]

    Srinivas M, Patnaik L M 1994 IEEE Trans. on SMC 24 656

    [18]

    Xie Z C, Zhou Y Q 2009 Mathematics in Practice and Theory 39 154 (in Chinese) [谢竹诚, 周永权 2009 数学的实践与认知 39 154]

  • [1]

    Wang X Y, Zhang H M, Wang G Y, Song J J, Qin S S, Qu J T 2011 Acta Phys. Sin. 60 027102 (in Chinese) [王晓艳, 张鹤鸣, 王冠宇, 宋建军, 秦珊珊, 屈江涛 2011 物理学报 60 027102]

    [2]

    Shang Y, Huo B Z, Meng C N, Yuan J H 2010 Acta Phys. Sin. 59 8178 (in Chinese) [尚英, 霍丙忠, 孟春宁, 袁景和 2010 物理学报 59 8178]

    [3]

    Ji F Y, Zhang S L 2012 Acta Phys. Sin. 61 080202 (in Chinese) [吉飞宇, 张顺利 2012 物理学报 61 080202]

    [4]

    Ma J W, Yang H Z, Zhu Y P 2001 Acta Phys. Sin. 50 1415 (in Chinese) [马坚伟, 杨慧珠, 朱亚平 2001 物理学报 50 1415]

    [5]

    Liu S K, Fu Z T, Liu S D 2001 Phys. Lett. A 289 69

    [6]

    Kohno T, Kotakemori H, Nikia H 1997 Linear Algebra Appl. 267 113

    [7]

    Hadjidimos A 2000 Journal of Computational and Applied Mathematics 123 77

    [8]

    Smith B F, Bjorstad P E, Gropp W D 1996 Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations (Cambridge: Cambridge University Press) p124

    [9]

    Wang X B, Liang Z C, Wu Z S, 2012 Acta Phys. Sin. 61 124104 (in Chinese) [王晓冰, 梁子长, 吴振森 2012 物理学报 61 124104]

    [10]

    He J, Xu J Y, Yao X 2000 IEEE Trans on Evolutionary Computation 4 295

    [11]

    Dai D, Ma X K, Li F C, You Y 2002 Acta Phys. Sin. 51 2459 (in Chinese) [戴栋, 马西奎, 李富才, 尤勇 2002 物理学报 51 2459]

    [12]

    Zhao Z J, Zhen S L, Shang J N, Kong X Z 2007 Acta Phys. Sin. 56 6760 (in Chinese) [赵知劲, 郑仕链, 尚俊娜, 孔宪正 2007 物理学报 56 6760]

    [13]

    Dutta D, Dutta P, Sil J 2012 Proceedings of the 1st International Conference on Recent Advances in Information Technology, Dhanbad, India, March 15-17 2012 p548

    [14]

    Sweilam N H, Moharram H M, Ahmed S 2012 Proceedings of the 8th International Conference on Informatics and Systems, Cairo, Egypt, May 14-16, 2012 p78

    [15]

    Xu Q Y 2011 Proceedings of the 2011 Inernational Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, Beijing, China, Octorber 10-12, 2011 p295

    [16]

    Wang B Z 2002 Computational electromagnetic (Beijing: Science Press) p34 (in Chinese) [王秉中 2002 计算电磁学(北京:科学出版社) 第34页]

    [17]

    Srinivas M, Patnaik L M 1994 IEEE Trans. on SMC 24 656

    [18]

    Xie Z C, Zhou Y Q 2009 Mathematics in Practice and Theory 39 154 (in Chinese) [谢竹诚, 周永权 2009 数学的实践与认知 39 154]

  • 引用本文:
    Citation:
计量
  • 文章访问数:  9945
  • PDF下载量:  1207
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-05-27
  • 修回日期:  2012-08-31
  • 刊出日期:  2013-01-05

二维泊松方程的遗传PSOR改进算法

  • 1. 湖南大学电气与信息工程学院, 长沙 410082;
  • 2. 合肥工业大学电气与自动化工程学院, 合肥 230009;
  • 3. 电子测试技术国防科技重点实验室, 青岛 266555
    基金项目: 

    国家杰出青年科学基金(批准号: 50925727)、 国家自然科学基金(批准号: 60876022, 61102039, 51107034)、 湖南省科技计划项目(批准号: 2011J4, 2011JK2023)、 国防预研重大项目(批准号: C1120110004)、广东省教育部产学研计划(批准号: 2009B090300196) 和中央高校基本科研业务费资助的课题.

摘要: 针对二维泊松方程在实际应用过程中几种常用方法存在计算量大、易发散、局部收敛等不足, 提出了一种改进算法.该算法基于并行超松弛迭代法,采用遗传算法对松弛因子进行全局寻优, 解决了超松弛迭代法求解泊松方程时最佳松弛因子难以确定的问题. 构建了多目标适应度函数,优化了遗传算子参数,分析了算法的计算量、计算时间与误差精度, 与传统方法进行了对比研究.结果表明:松弛因子对泊松方程求解的速度与精度影响显著; 改进算法能减少迭代次数,节省计算时间,加快方程的求解;算法适合于求解计算量较大、 精度要求较高的时域有限差分方程,而且精度要求越高,算法的性能越好,节省的时间也越多.

English Abstract

参考文献 (18)

目录

    /

    返回文章
    返回