搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

InGaAs/AlGaAs量子阱红外探测器中势垒生长温度的研究

霍大云 石震武 张伟 唐沈立 彭长四

InGaAs/AlGaAs量子阱红外探测器中势垒生长温度的研究

霍大云, 石震武, 张伟, 唐沈立, 彭长四
PDF
导出引用
导出核心图
  • InGaAs/AlGaAs量子阱是中波量子阱红外探测器件最常用的材料体系,本文以结构为2.4 nm In0.35Ga0.65As/40 nm Al0.34Ga0.66As的多量子阱材料为研究对象,利用分子束外延生长,固定InGaAs势阱的生长温度(465℃),然后依次升高分别选取465,500,545,580℃生长AlGaAs势垒层,从而获得四个不同的多量子阱样品.通过荧光光谱以及X射线衍射测试系统分析了势垒层生长温度对InGaAs量子阱发光和质量的影响,并较准确地给出了量子阱大致的温致弛豫轨迹:465500℃,开始出现相分离,但缺陷水平较低,属弹性弛豫阶段;500545℃,相分离加剧并伴随缺陷水平的上升,属弹性弛豫向塑性弛豫过渡阶段;545580℃,相分离以及缺陷水平急剧上升,迅速进入塑性弛豫阶段,尤其是580℃时,量子阱的材料质量被严重破坏.
      通信作者: 石震武, zwshi@suda.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11504251)、江苏高校优势学科建设工程、科技部国际合作项目(批准号:2013DFG12210)、江苏省高校自然科学研究重大项目(批准号:12 KJA140001)和江苏省普通高校研究生科研创新计划(批准号:KYLX15_1252)资助的课题.
    [1]

    Levine B F, Choi K K, Bethea C G, Walker J, Malik R J 1987 Appl. Phys. Lett. 50 1092

    [2]

    Yuan X Z, Lu W, Li N, Chen X S, Shen X C, Zi J 2003 Acta Phys. Sin. 52 503 (in Chinese) [袁先漳, 陆卫, 李宁, 陈效双, 沈学础, 资剑 2003 物理学报 52 503]

    [3]

    Levine B F, Bethea C G, Hasnain G, Shen V O, Pelve E, Abbott R R, Hsieh S J 1990 Appl. Phys. Lett. 56 851

    [4]

    Lee S C, Krishna, Brueck S R J 2009 Opt. Express 17 23160

    [5]

    Castellano F, Rossi F, Faist J, Lhuillier E, Berger V 2009 Phys. Rev. B 79 205304

    [6]

    Levine B F 1993 J. Appl. Phys. 74 R1

    [7]

    Nedelcu A, Costard E, Bois P, Marcadet X 2007 Infrared Phys. Technol. 50 227

    [8]

    Li N, Yuan X Z, Li N, Lu W, Li Z F, Dou H F, Shen X C, Jin L, Li H W, Zhou J M, Huang Y 2000 Acta Phys. Sin. 49 797 (in Chinese) [李娜, 袁先漳, 李宁, 陆卫, 李志峰, 窦红飞, 沈学础, 金莉, 李宏伟, 周均铭, 黄绮 2000 物理学报 49 797]

    [9]

    Gunapala S, Bandara S, Bock J, Ressler M, Liu J, Mumolo J, Rafol S, Ting D, Wemer M 2002 Aerospace Conference Proceedings Montana, American, March 9-16, pp3-1437

    [10]

    Choi K K, Jhabvala M D, Sun J, Jhabvala C A, Waczynski A, Olver K 2013 Appl. Phys. Lett. 103 201113

    [11]

    Costard E, Bois P, de Rossi A, Nedelcu A, Cocle O, Gauthier F H, Audier F 2003 C. R. Phys. 10 1089

    [12]

    Wang L M, Zhang R, Lin Y N, Xu S L 2008 Infrared Laser Eng. S2 570 (in Chinese) [王力民, 张蕊, 林一楠, 徐世录 2008 红外与激光工程 S2 570]

    [13]

    Lourenco M A, Homewood K P, Considine L 1994 Mater. Sci. Eng. B 28 507

    [14]

    Whaley G J, Cohen P I 1990 Appl. Phys. Lett. 57 144

    [15]

    Sasaki T, Suzuki H, Sai A, Takahasi M, Fujikawa S, Kamiya I, Ohshita Y, Yamaguchi M 2011 J. Cryst. Growth 323 13

    [16]

    Quillec M, Goldstein L, Roux G L, Burgeat J, Primot J 1984 J. Appl. Phys. 55 2094

    [17]

    Tanner B K, Parbrook P J, Whitehouse C R, Keir A M, Johnson A D, Jones J, Wallis D, Smith L M, Luun B, Hogg J H C 2001 J. Phys. D: Appl. Phys. 34 A109

    [18]

    Li Q, Wang G T 2010 Appl. Phys. Lett. 97 181107

    [19]

    Zhang G, Ovtchinnikov A, Pessa M 1993 J. Cryst. Growth 127 209

    [20]

    Cho Y H, Gainer G H, Fischer A J, Song J J, Keller S, Mishra U K, DenBaars S P 1998 Appl. Phys. lett. 73 1370

    [21]

    Shi Z W, Wang L, Zhen H L, Wang W X, Chen H 2013 Nanoscale Res. Lett. 8 310

  • [1]

    Levine B F, Choi K K, Bethea C G, Walker J, Malik R J 1987 Appl. Phys. Lett. 50 1092

    [2]

    Yuan X Z, Lu W, Li N, Chen X S, Shen X C, Zi J 2003 Acta Phys. Sin. 52 503 (in Chinese) [袁先漳, 陆卫, 李宁, 陈效双, 沈学础, 资剑 2003 物理学报 52 503]

    [3]

    Levine B F, Bethea C G, Hasnain G, Shen V O, Pelve E, Abbott R R, Hsieh S J 1990 Appl. Phys. Lett. 56 851

    [4]

    Lee S C, Krishna, Brueck S R J 2009 Opt. Express 17 23160

    [5]

    Castellano F, Rossi F, Faist J, Lhuillier E, Berger V 2009 Phys. Rev. B 79 205304

    [6]

    Levine B F 1993 J. Appl. Phys. 74 R1

    [7]

    Nedelcu A, Costard E, Bois P, Marcadet X 2007 Infrared Phys. Technol. 50 227

    [8]

    Li N, Yuan X Z, Li N, Lu W, Li Z F, Dou H F, Shen X C, Jin L, Li H W, Zhou J M, Huang Y 2000 Acta Phys. Sin. 49 797 (in Chinese) [李娜, 袁先漳, 李宁, 陆卫, 李志峰, 窦红飞, 沈学础, 金莉, 李宏伟, 周均铭, 黄绮 2000 物理学报 49 797]

    [9]

    Gunapala S, Bandara S, Bock J, Ressler M, Liu J, Mumolo J, Rafol S, Ting D, Wemer M 2002 Aerospace Conference Proceedings Montana, American, March 9-16, pp3-1437

    [10]

    Choi K K, Jhabvala M D, Sun J, Jhabvala C A, Waczynski A, Olver K 2013 Appl. Phys. Lett. 103 201113

    [11]

    Costard E, Bois P, de Rossi A, Nedelcu A, Cocle O, Gauthier F H, Audier F 2003 C. R. Phys. 10 1089

    [12]

    Wang L M, Zhang R, Lin Y N, Xu S L 2008 Infrared Laser Eng. S2 570 (in Chinese) [王力民, 张蕊, 林一楠, 徐世录 2008 红外与激光工程 S2 570]

    [13]

    Lourenco M A, Homewood K P, Considine L 1994 Mater. Sci. Eng. B 28 507

    [14]

    Whaley G J, Cohen P I 1990 Appl. Phys. Lett. 57 144

    [15]

    Sasaki T, Suzuki H, Sai A, Takahasi M, Fujikawa S, Kamiya I, Ohshita Y, Yamaguchi M 2011 J. Cryst. Growth 323 13

    [16]

    Quillec M, Goldstein L, Roux G L, Burgeat J, Primot J 1984 J. Appl. Phys. 55 2094

    [17]

    Tanner B K, Parbrook P J, Whitehouse C R, Keir A M, Johnson A D, Jones J, Wallis D, Smith L M, Luun B, Hogg J H C 2001 J. Phys. D: Appl. Phys. 34 A109

    [18]

    Li Q, Wang G T 2010 Appl. Phys. Lett. 97 181107

    [19]

    Zhang G, Ovtchinnikov A, Pessa M 1993 J. Cryst. Growth 127 209

    [20]

    Cho Y H, Gainer G H, Fischer A J, Song J J, Keller S, Mishra U K, DenBaars S P 1998 Appl. Phys. lett. 73 1370

    [21]

    Shi Z W, Wang L, Zhen H L, Wang W X, Chen H 2013 Nanoscale Res. Lett. 8 310

  • [1] 资 剑, 袁先漳, 李 宁, 陈效双, 沈学础, 陆 卫. 超长波GaAs/AlGaAs量子阱红外探测器光电流谱特性研究. 物理学报, 2003, 52(2): 503-507. doi: 10.7498/aps.52.503
    [2] 熊大元, 曾 勇, 李 宁, 陆 卫. 甚长波量子阱红外探测器光栅耦合的研究. 物理学报, 2006, 55(7): 3642-3648. doi: 10.7498/aps.55.3642
    [3] 熊大元, 李志锋, 陈效双, 李 宁, 甄红楼, 陆 卫. 用金属小球进行长波量子阱红外探测器的光耦合. 物理学报, 2007, 56(11): 6648-6653. doi: 10.7498/aps.56.6648
    [4] 徐文兰, 熊大元, 李 宁, 甄红楼, 李志锋, 陆 卫. 甚长波量子阱红外探测器的暗电流特性研究. 物理学报, 2007, 56(9): 5424-5428. doi: 10.7498/aps.56.5424
    [5] 王 科, 郑婉华, 任 刚, 杜晓宇, 邢名欣, 陈良惠. 双色量子阱红外探测器顶部光子晶体耦合层的设计优化. 物理学报, 2008, 57(3): 1730-1736. doi: 10.7498/aps.57.1730
    [6] 刘小宇, 马文全, 张艳华, 霍永恒, 种明, 陈良惠. 10—14 μm同时响应的双色量子阱红外探测器. 物理学报, 2010, 59(8): 5720-5723. doi: 10.7498/aps.59.5720
    [7] 霍永恒, 马文全, 张艳华, 黄建亮, 卫炀, 崔凯, 陈良惠. 两端叠层结构的中长波量子阱红外探测器. 物理学报, 2011, 60(9): 098401. doi: 10.7498/aps.60.098401
    [8] 周旭昌, 陈效双, 甄红楼, 陆 卫. 空穴在动量空间分布对p型量子阱红外探测器响应光谱的影响. 物理学报, 2006, 55(8): 4247-4252. doi: 10.7498/aps.55.4247
    [9] 刘洁, 王禄, 孙令, 王文奇, 吴海燕, 江洋, 马紫光, 王文新, 贾海强, 陈弘. 基于p-n结中反常光电转换现象的新型带间跃迁量子阱红外探测器. 物理学报, 2018, 67(12): 128101. doi: 10.7498/aps.67.20180588
    [10] 刘红梅, 杨春花, 刘鑫, 张建奇, 石云龙. 量子点红外探测器的噪声表征. 物理学报, 2013, 62(21): 218501. doi: 10.7498/aps.62.218501
    [11] 刘珂, 马文全, 黄建亮, 张艳华, 曹玉莲, 黄文军, 赵成城. 含有AlGaAs插入层的InAs/GaAs三色量子点红外探测器. 物理学报, 2016, 65(10): 108502. doi: 10.7498/aps.65.108502
    [12] 徐向晏, 叶振华, 李志锋, 陆 卫. 中波HgCdTe双色红外探测器优化模拟计算. 物理学报, 2007, 56(5): 2882-2889. doi: 10.7498/aps.56.2882
    [13] 朱文章, 沈顗华. GaAs/AlGaAs多量子阱光生电压谱研究. 物理学报, 1996, 45(2): 258-264. doi: 10.7498/aps.45.258
    [14] 周彦平, 黎发军, 车驰, 谭立英, 冉启文, 于思源, 马晶. 量子点红外探测器在空间光电系统中的应用. 物理学报, 2014, 63(14): 148501. doi: 10.7498/aps.63.148501
    [15] 徐仲英, 李玉璋, 徐俊英, 许继宗, 郑宝真, 庄蔚华, 葛惟锟. GaAs-GaAlAs多量子阱结构中热载流子弛豫过程. 物理学报, 1987, 36(10): 1336-1343. doi: 10.7498/aps.36.1336
    [16] 朱海军, 龚大卫, 盛篪, 王迅, 俞敏峰, 沈文忠, 杨宇. p型GexSi1-x/Si多量子阱的红外吸收及其分析. 物理学报, 1997, 46(4): 740-746. doi: 10.7498/aps.46.740
    [17] 贾惟义, 鲁志东, 黄绮, 周均铭, 李永康, 王彦云. GaAs/GaAlAs多量子阱的光致荧光诊断. 物理学报, 1988, 37(6): 906-915. doi: 10.7498/aps.37.906
    [18] 张戎, 郭旭光, 曹俊诚. 太赫兹量子阱光电探测器光栅耦合的模拟与优化. 物理学报, 2011, 60(5): 050705. doi: 10.7498/aps.60.050705
    [19] 李良新, 胡勇华. 可用于红外探测器的自组织量子线及其带间和子带间光学跃迁. 物理学报, 2005, 54(2): 848-856. doi: 10.7498/aps.54.848
    [20] 蔡春锋, 吴惠桢, 斯剑霄, 孙艳, 戴宁. MBE生长PbSe/PbSrSe量子阱结构的光致中红外发光的研究. 物理学报, 2009, 58(5): 3560-3564. doi: 10.7498/aps.58.3560
  • 引用本文:
    Citation:
计量
  • 文章访问数:  414
  • PDF下载量:  145
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-20
  • 修回日期:  2016-12-22
  • 刊出日期:  2017-03-20

InGaAs/AlGaAs量子阱红外探测器中势垒生长温度的研究

  • 1. 苏州大学光电信息科学与工程学院/苏州纳米科技协同创新中心, 苏州 215006
  • 通信作者: 石震武, zwshi@suda.edu.cn
    基金项目: 

    国家自然科学基金(批准号:11504251)、江苏高校优势学科建设工程、科技部国际合作项目(批准号:2013DFG12210)、江苏省高校自然科学研究重大项目(批准号:12 KJA140001)和江苏省普通高校研究生科研创新计划(批准号:KYLX15_1252)资助的课题.

摘要: InGaAs/AlGaAs量子阱是中波量子阱红外探测器件最常用的材料体系,本文以结构为2.4 nm In0.35Ga0.65As/40 nm Al0.34Ga0.66As的多量子阱材料为研究对象,利用分子束外延生长,固定InGaAs势阱的生长温度(465℃),然后依次升高分别选取465,500,545,580℃生长AlGaAs势垒层,从而获得四个不同的多量子阱样品.通过荧光光谱以及X射线衍射测试系统分析了势垒层生长温度对InGaAs量子阱发光和质量的影响,并较准确地给出了量子阱大致的温致弛豫轨迹:465500℃,开始出现相分离,但缺陷水平较低,属弹性弛豫阶段;500545℃,相分离加剧并伴随缺陷水平的上升,属弹性弛豫向塑性弛豫过渡阶段;545580℃,相分离以及缺陷水平急剧上升,迅速进入塑性弛豫阶段,尤其是580℃时,量子阱的材料质量被严重破坏.

English Abstract

参考文献 (21)

目录

    /

    返回文章
    返回