搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于p-n结中反常光电转换现象的新型带间跃迁量子阱红外探测器

刘洁 王禄 孙令 王文奇 吴海燕 江洋 马紫光 王文新 贾海强 陈弘

基于p-n结中反常光电转换现象的新型带间跃迁量子阱红外探测器

刘洁, 王禄, 孙令, 王文奇, 吴海燕, 江洋, 马紫光, 王文新, 贾海强, 陈弘
PDF
导出引用
导出核心图
  • 实验发现p-n结中局域载流子具有极高抽取效率,同时伴随着吸收系数的大幅度增加.本文报道上述现象的发现和验证过程,以及基于此现象的新型带间跃迁量子阱红外探测器(interband transition quantum well infrared detector,IQWIP)原型器件的性能.采用共振激发光致发光光谱技术,在InGaN量子阱、InGaAs量子阱、InAs量子点等多个材料体系中均观察到了在p-n结电场作用下的载流子高效逃逸现象,抽取效率分别为95%,87.5%,88%.利用含有InGaAs/GaAs多量子阱的PIN二极管,实验尝试了制备新型的IQWIP原型器件.在无表面减反射膜的实验条件下,利用仅100 nm的有效吸收厚度,实现了31%的外量子效率.基于这个数值推算得到量子阱的光吸收系数达到3.7104cm-1,该数值高于传统透射实验测量体材料和量子阱结果.此外,还利用InAsSb/GaSb量子阱材料体系进行了2 m以上波长红外探测的探索.利用上述现象,有望在提高现有器件性能的同时开发出新颖的光-电转换器件.
      通信作者: 陈弘, hchen@iphy.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11574362,61210014,11374340,11474205)和国家重点研发计划(批准号:2016YFB0400302)资助的课题.
    [1]

    Goetzberger A, Hebling C, Schock H W 2003 Mater. Sci. Engineer. R:Rep. 40 1

    [2]

    Jenny D, Loferski J, Rappaport P 1956 Phys. Rev. 101 1208

    [3]

    Chapin D M, Fuller C, Pearson G 1954 J. Appl. Phys. 25 676

    [4]

    Gloeckler M, Sankin I, Zhao Z 2013 IEEE J. Photovolt. 3 1389

    [5]

    Chirilǎ A, Buecheler S, Pianezzi F, Bloesch P, Gretener C, Uhl A R, Fella C, Kranz L, Perrenoud J, Seyrling S 2011 Nat. Mater. 10 857

    [6]

    Rogalski A 2005 Rep. Prog. Phys. 68 2267

    [7]

    Callewaert F, Hoang A, Razeghi M 2014 Appl. Phys. Lett. 104 053508

    [8]

    Liu S T, Quan Z J, Wang L 2017 Chin. Phys. B 26 038104

    [9]

    Nelson J 2003 The Physics of Solar Cells (London:World Scientific Publishing Company) pp19-37

    [10]

    Rogalski A 2010 Infrared Detectors (Florida:CRC Press) pp295-338

    [11]

    Basu P K 1997 Theory of Optical Processes in Semiconductors:Bulk and Microstructures (Vol. 4) (Oxford:Clarendon Press) pp80-122

    [12]

    Dahal R, Pantha B, Li J, Lin J, Jiang H 2009 Appl. Phys. Lett. 94 063505

    [13]

    Grundmann M 2015 The Physics of Semiconductors:An Introduction Including Nanophysics and Applications (Heidelberg:Springer)

    [14]

    Qiu W, Hu W, Lin C, Chen X, Lu W 2016 Opt. Lett. 41 828

    [15]

    Bai Z Z, Xu Z C, Zhou Y, Yao H C, Chen H L, Chen J X, Ding R J, He L 2015 J. Infrared Millim. Wave 34 716 (in Chinese)[白治中, 徐志成, 周易, 姚华城, 陈洪雷, 陈建新, 丁瑞军, 何力 2015 红外与毫米波学报 34 716]

    [16]

    Rogalski A, Antoszewski J, Faraone L 2009 J. Appl. Phys. 105 091101

    [17]

    Hu W D, Liang J, Yue F Y, Chen X S, Lu W 2016 J. Infrared Millim. Wave 35 25 (in Chinese)[胡伟达, 梁健, 越方禹, 陈效双, 陆卫 2016 红外与毫米波学报 35 25]

    [18]

    Liu D, Lin C, Zhou S, Hu X 2016 J. Electron. Mater. 45 2802

    [19]

    Ye Z, Zhang P, Li Y, Chen Y, Zhou S, Huang Y, Sun C, Lin C, Hu X, Ding R 2014 Opt. Quantum Electron. 46 1283

    [20]

    Rogalski A 2003 Prog. Quantum Electron. 27 59

    [21]

    Maimon S, Wicks G 2006 Appl. Phys. Lett. 89 151109

    [22]

    Chakrabarti S, Stiff-Roberts A, Bhattacharya P, Gunapala S, Bandara S, Rafol S, Kennerly S 2004 IEEE Photon. Technol. Lett. 16 1361

    [23]

    Freundlich A, Lombez L, Sugiyama M 2016 Proc. SPIE 9743 974301

    [24]

    Rogalski A 2003 J. Appl. Phys. 93 4355

    [25]

    Levine B 1993 J. Appl. Phys. 74 R1

    [26]

    Ridley B 1991 Rep. Prog. Phys. 54 169

    [27]

    Luque A, Mart A 2011 Nat. Photon. 5 137

    [28]

    Xu Z Y, Lu Z D, Yang X, Yuan Z, Zheng B, Xu J, Ge W, Wang Y, Wang J, Chang L L 1996 Phys. Rev. B 54 11528

    [29]

    Casey Jr H, Sell D, Wecht K 1975 J. Appl. Phys. 46 250

    [30]

    Green M A 2008 Solar Energy Materials and Solar Cells 92 1305

    [31]

    Mooney P, LeGoues F, Tersoff J, Chu J 1994 J. Appl. Phys. 75 3968

    [32]

    Jain S, Willander M, Maes H 1996 Semicond. Sci. Technol. 11 641

    [33]

    Dunstan D, Young S, Dixon R 1991 J. Appl. Phys. 70 3038

    [34]

    Chatterjee S, Ell C, Mosor S, Khitrova G, Gibbs H M 2004 Phys. Rev. Lett. 92 067402

    [35]

    Kaindl R A, Carnahan M A, Hagele D, Lovenich R, Chemla D S 2003 Nature 423 734

    [36]

    Wang W, Wang L, Jiang Y, Ma Z, Sun L, Liu J, Sun Q, Zhao B, Wang W, Liu W, Jia H, Chen H 2016 Chin. Phys. B 25 097307

    [37]

    Wang W Q 2017 Ph. D. Dissertation (Beijing:University of Chinese Academy of Sciences) (in Chinese)[王文奇 2017 博士学位论文 (北京:中国科学院大学)]

    [38]

    Li T, Bartolo R E, Dagenais M 2013 Appl. Phys. Lett. 103 141113

    [39]

    Antoln E, Marti A, Farmer C, Linares P, Hernndez E, Snchez A, Ben T, Molina S, Stanley C, Luque A 2010 J. Appl. Phys. 108 064513

    [40]

    Kapteyn C, Heinrichsdorff F, Stier O, Heitz R, Grundmann M, Zakharov N, Bimberg D, Werner P 1999 Phys. Rev. B 60 14265

    [41]

    Heitz R, Veit M, Ledentsov N N, Hoffmann A, Bimberg D, Ustinov V M, Kop'ev P S, Alferov Z I 1997 Phys. Rev. B 56 10435

    [42]

    Harrison J, Hauser J 1976 J. Appl. Phys. 47 292

    [43]

    Luque A, Mellor A, Ramiro I, Antoln E, Tobas I, Mart A 2013 Solar Energy Materials and Solar Cells 115 138

    [44]

    Mellor A, Luque A, Tobas I, Mart A 2014 Adv. Funct. Mater. 24 339

    [45]

    Sturge M 1962 Phys. Rev. 127 768

    [46]

    Elliott R 1957 Phys. Rev. 108 1384

    [47]

    Sun Q L, Wang L, Jiang Y, Ma Z G, Wang W Q, Sun L, Wang W X, Jia H Q, Zhou J M, Chen H 2016 Chin. Phys. Lett. 33 106801

    [48]

    Wu H Y, Ma Z G, Jiang Y, Wang L, Yang H J, Li Y F, Zuo P, Jia H Q, Wang W X, Zhou J M, Liu W M, Chen H 2016 Chin. Phys. B 25 117803

    [49]

    Liu J, Wang L, Jiang Y, Ma Z G, Wang W Q, Sun L, Jia H Q, Wang W X, Chen H 2017 J. Infrared Millim. Wave 36 129 (in Chinese)[刘洁, 王禄, 江洋, 马紫光, 王文奇, 孙令, 贾海强, 王文新, 陈弘 2017 红外与毫米波学报 36 129]

    [50]

    Sun L, Wang L, Lu J L, Liu J, Fang J, Xie L L, Hao Z B, Jia H Q, Wang W X, Chen H 2018 Chin. Phys. B 27 047209

  • [1]

    Goetzberger A, Hebling C, Schock H W 2003 Mater. Sci. Engineer. R:Rep. 40 1

    [2]

    Jenny D, Loferski J, Rappaport P 1956 Phys. Rev. 101 1208

    [3]

    Chapin D M, Fuller C, Pearson G 1954 J. Appl. Phys. 25 676

    [4]

    Gloeckler M, Sankin I, Zhao Z 2013 IEEE J. Photovolt. 3 1389

    [5]

    Chirilǎ A, Buecheler S, Pianezzi F, Bloesch P, Gretener C, Uhl A R, Fella C, Kranz L, Perrenoud J, Seyrling S 2011 Nat. Mater. 10 857

    [6]

    Rogalski A 2005 Rep. Prog. Phys. 68 2267

    [7]

    Callewaert F, Hoang A, Razeghi M 2014 Appl. Phys. Lett. 104 053508

    [8]

    Liu S T, Quan Z J, Wang L 2017 Chin. Phys. B 26 038104

    [9]

    Nelson J 2003 The Physics of Solar Cells (London:World Scientific Publishing Company) pp19-37

    [10]

    Rogalski A 2010 Infrared Detectors (Florida:CRC Press) pp295-338

    [11]

    Basu P K 1997 Theory of Optical Processes in Semiconductors:Bulk and Microstructures (Vol. 4) (Oxford:Clarendon Press) pp80-122

    [12]

    Dahal R, Pantha B, Li J, Lin J, Jiang H 2009 Appl. Phys. Lett. 94 063505

    [13]

    Grundmann M 2015 The Physics of Semiconductors:An Introduction Including Nanophysics and Applications (Heidelberg:Springer)

    [14]

    Qiu W, Hu W, Lin C, Chen X, Lu W 2016 Opt. Lett. 41 828

    [15]

    Bai Z Z, Xu Z C, Zhou Y, Yao H C, Chen H L, Chen J X, Ding R J, He L 2015 J. Infrared Millim. Wave 34 716 (in Chinese)[白治中, 徐志成, 周易, 姚华城, 陈洪雷, 陈建新, 丁瑞军, 何力 2015 红外与毫米波学报 34 716]

    [16]

    Rogalski A, Antoszewski J, Faraone L 2009 J. Appl. Phys. 105 091101

    [17]

    Hu W D, Liang J, Yue F Y, Chen X S, Lu W 2016 J. Infrared Millim. Wave 35 25 (in Chinese)[胡伟达, 梁健, 越方禹, 陈效双, 陆卫 2016 红外与毫米波学报 35 25]

    [18]

    Liu D, Lin C, Zhou S, Hu X 2016 J. Electron. Mater. 45 2802

    [19]

    Ye Z, Zhang P, Li Y, Chen Y, Zhou S, Huang Y, Sun C, Lin C, Hu X, Ding R 2014 Opt. Quantum Electron. 46 1283

    [20]

    Rogalski A 2003 Prog. Quantum Electron. 27 59

    [21]

    Maimon S, Wicks G 2006 Appl. Phys. Lett. 89 151109

    [22]

    Chakrabarti S, Stiff-Roberts A, Bhattacharya P, Gunapala S, Bandara S, Rafol S, Kennerly S 2004 IEEE Photon. Technol. Lett. 16 1361

    [23]

    Freundlich A, Lombez L, Sugiyama M 2016 Proc. SPIE 9743 974301

    [24]

    Rogalski A 2003 J. Appl. Phys. 93 4355

    [25]

    Levine B 1993 J. Appl. Phys. 74 R1

    [26]

    Ridley B 1991 Rep. Prog. Phys. 54 169

    [27]

    Luque A, Mart A 2011 Nat. Photon. 5 137

    [28]

    Xu Z Y, Lu Z D, Yang X, Yuan Z, Zheng B, Xu J, Ge W, Wang Y, Wang J, Chang L L 1996 Phys. Rev. B 54 11528

    [29]

    Casey Jr H, Sell D, Wecht K 1975 J. Appl. Phys. 46 250

    [30]

    Green M A 2008 Solar Energy Materials and Solar Cells 92 1305

    [31]

    Mooney P, LeGoues F, Tersoff J, Chu J 1994 J. Appl. Phys. 75 3968

    [32]

    Jain S, Willander M, Maes H 1996 Semicond. Sci. Technol. 11 641

    [33]

    Dunstan D, Young S, Dixon R 1991 J. Appl. Phys. 70 3038

    [34]

    Chatterjee S, Ell C, Mosor S, Khitrova G, Gibbs H M 2004 Phys. Rev. Lett. 92 067402

    [35]

    Kaindl R A, Carnahan M A, Hagele D, Lovenich R, Chemla D S 2003 Nature 423 734

    [36]

    Wang W, Wang L, Jiang Y, Ma Z, Sun L, Liu J, Sun Q, Zhao B, Wang W, Liu W, Jia H, Chen H 2016 Chin. Phys. B 25 097307

    [37]

    Wang W Q 2017 Ph. D. Dissertation (Beijing:University of Chinese Academy of Sciences) (in Chinese)[王文奇 2017 博士学位论文 (北京:中国科学院大学)]

    [38]

    Li T, Bartolo R E, Dagenais M 2013 Appl. Phys. Lett. 103 141113

    [39]

    Antoln E, Marti A, Farmer C, Linares P, Hernndez E, Snchez A, Ben T, Molina S, Stanley C, Luque A 2010 J. Appl. Phys. 108 064513

    [40]

    Kapteyn C, Heinrichsdorff F, Stier O, Heitz R, Grundmann M, Zakharov N, Bimberg D, Werner P 1999 Phys. Rev. B 60 14265

    [41]

    Heitz R, Veit M, Ledentsov N N, Hoffmann A, Bimberg D, Ustinov V M, Kop'ev P S, Alferov Z I 1997 Phys. Rev. B 56 10435

    [42]

    Harrison J, Hauser J 1976 J. Appl. Phys. 47 292

    [43]

    Luque A, Mellor A, Ramiro I, Antoln E, Tobas I, Mart A 2013 Solar Energy Materials and Solar Cells 115 138

    [44]

    Mellor A, Luque A, Tobas I, Mart A 2014 Adv. Funct. Mater. 24 339

    [45]

    Sturge M 1962 Phys. Rev. 127 768

    [46]

    Elliott R 1957 Phys. Rev. 108 1384

    [47]

    Sun Q L, Wang L, Jiang Y, Ma Z G, Wang W Q, Sun L, Wang W X, Jia H Q, Zhou J M, Chen H 2016 Chin. Phys. Lett. 33 106801

    [48]

    Wu H Y, Ma Z G, Jiang Y, Wang L, Yang H J, Li Y F, Zuo P, Jia H Q, Wang W X, Zhou J M, Liu W M, Chen H 2016 Chin. Phys. B 25 117803

    [49]

    Liu J, Wang L, Jiang Y, Ma Z G, Wang W Q, Sun L, Jia H Q, Wang W X, Chen H 2017 J. Infrared Millim. Wave 36 129 (in Chinese)[刘洁, 王禄, 江洋, 马紫光, 王文奇, 孙令, 贾海强, 王文新, 陈弘 2017 红外与毫米波学报 36 129]

    [50]

    Sun L, Wang L, Lu J L, Liu J, Fang J, Xie L L, Hao Z B, Jia H Q, Wang W X, Chen H 2018 Chin. Phys. B 27 047209

  • [1] 李宏建, 彭景翠, 瞿述, 夏辉, 罗小华, 许雪梅. 有机电致发光器件中载流子的输运和复合发光. 物理学报, 2002, 51(2): 430-433. doi: 10.7498/aps.51.430
    [2] 张增星, 李东. 基于双极性二维晶体的新型p-n结. 物理学报, 2017, 66(21): 217302. doi: 10.7498/aps.66.217302
    [3] 高立, 张建民. 微量Mg掺杂ZnO薄膜的光致发光光谱和带隙变化机理研究. 物理学报, 2010, 59(2): 1263-1267. doi: 10.7498/aps.59.1263
    [4] 李志锋, 蔡炜颖, 何 力, 胡晓宁, 陆 卫, 沈学础, 陈贵宾. 质子注入MBE碲镉汞n-on-p结性能研究. 物理学报, 2003, 52(6): 1496-1499. doi: 10.7498/aps.52.1496
    [5] 李海宏, 李冬梅, 刘 文, 李 元, 刘晓静, 解士杰, 刘德胜. 金属/掺杂聚合物/金属结构中载流子的注入与输运. 物理学报, 2008, 57(2): 1117-1122. doi: 10.7498/aps.57.1117
    [6] 李冬梅, 李海宏, 李 元, 解士杰, 刘德胜. 载流子在金属/聚对苯乙炔/金属结构中注入及输运的动力学研究. 物理学报, 2008, 57(8): 5217-5225. doi: 10.7498/aps.57.5217
    [7] 秋本良一, 冀子武, 小嵨映二, 嶽山正二郎, 三野弘文. 调制n型掺杂ZnSe/BeTe Ⅱ型量子阱结构的发光特性. 物理学报, 2008, 57(5): 3260-3266. doi: 10.7498/aps.57.3260
    [8] 任艳东, 郝淑娟, 邱忠阳. 表面等离子体增强氧化锌纳米带发光特性的研究 . 物理学报, 2013, 62(14): 147302. doi: 10.7498/aps.62.147302
    [9] 王健, 谢自力, 张荣, 张韵, 刘斌, 陈鹏, 韩平. InN的光致发光特性研究. 物理学报, 2013, 62(11): 117802. doi: 10.7498/aps.62.117802
    [10] 宋淑梅, 吕英波, 王爱芳, 吴爱玲, 郑卫民, 李素梅. 量子限制受主的光致发光研究. 物理学报, 2009, 58(7): 4936-4940. doi: 10.7498/aps.58.4936
    [11] 邓 宏, 韦 敏, 陈金菊, 郝 昕, 税正伟, 唐 斌. 掺AlZnO纳米线阵列的光致发光特性研究. 物理学报, 2007, 56(9): 5176-5179. doi: 10.7498/aps.56.5176
    [12] 肖芝燕, 张伟力, 高 红, 王玉玺, 张喜田, 刘益春, 张吉英, 许 武. 高质量纳米ZnO薄膜的光致发光特性研究. 物理学报, 2003, 52(3): 740-744. doi: 10.7498/aps.52.740
    [13] 黄凯, 王思慧, 施毅, 秦国毅, 张荣, 郑有炓. 内电场对纳米硅光致发光谱的影响. 物理学报, 2004, 53(4): 1236-1242. doi: 10.7498/aps.53.1236
    [14] 高亚臣, 曲士良, 宋瑛林, 刘树田, 赵崇军, 邱建荣, 朱从善. 飞秒激光所致金纳米粒子析出的玻璃非线性吸收. 物理学报, 2005, 54(1): 139-143. doi: 10.7498/aps.54.139
    [15] 刘丽峰, 吕惠宾, 戴守愚, 陈正豪. 巨磁电阻材料La0.9Sr0.1MnO3与半导体Si组成的二极管的整流特性. 物理学报, 2005, 54(5): 2342-2345. doi: 10.7498/aps.54.2342
    [16] 彭英才, 王英龙, 卢丽芳, 闫常瑜, 褚立志, 周 阳, 傅广生. 具有窄光致发光谱的纳米Si晶薄膜的激光烧蚀制备. 物理学报, 2005, 54(12): 5738-5742. doi: 10.7498/aps.54.5738
    [17] 于 威, 李亚超, 丁文革, 张江勇, 杨彦斌, 傅广生. 氮化硅薄膜中纳米非晶硅颗粒的键合结构及光致发光. 物理学报, 2008, 57(6): 3661-3665. doi: 10.7498/aps.57.3661
    [18] 缪竞威, 王培禄, 袁学东, 王 虎, 杨朝文, 师勉恭, 缪 蕾, 张 静, 朱洲森, 孙威立, 廖雪花. 氮团簇离子注入单晶硅的光致发光谱研究. 物理学报, 2008, 57(4): 2174-2178. doi: 10.7498/aps.57.2174
    [19] 刘方舒, 吴定才, 胡志刚, 段满益, 徐禄祥, 董成军, 吴艳南, 纪红萱, 徐明. Co与Cu掺杂ZnO薄膜的制备与光致发光研究. 物理学报, 2009, 58(10): 7261-7266. doi: 10.7498/aps.58.7261
    [20] 黄柏标, 尉吉勇, 郑立仁. 不同气氛下SiOx纳米线的制备及形貌、红外、光致发光研究. 物理学报, 2009, 58(4): 2306-2312. doi: 10.7498/aps.58.2306
  • 引用本文:
    Citation:
计量
  • 文章访问数:  317
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-03
  • 修回日期:  2018-05-03
  • 刊出日期:  2018-06-20

基于p-n结中反常光电转换现象的新型带间跃迁量子阱红外探测器

  • 1. 中国科学院物理研究所, 清洁能源重点实验室, 北京 100190;
  • 2. 中国科学院大学, 北京 100049
  • 通信作者: 陈弘, hchen@iphy.ac.cn
    基金项目: 

    国家自然科学基金(批准号:11574362,61210014,11374340,11474205)和国家重点研发计划(批准号:2016YFB0400302)资助的课题.

摘要: 实验发现p-n结中局域载流子具有极高抽取效率,同时伴随着吸收系数的大幅度增加.本文报道上述现象的发现和验证过程,以及基于此现象的新型带间跃迁量子阱红外探测器(interband transition quantum well infrared detector,IQWIP)原型器件的性能.采用共振激发光致发光光谱技术,在InGaN量子阱、InGaAs量子阱、InAs量子点等多个材料体系中均观察到了在p-n结电场作用下的载流子高效逃逸现象,抽取效率分别为95%,87.5%,88%.利用含有InGaAs/GaAs多量子阱的PIN二极管,实验尝试了制备新型的IQWIP原型器件.在无表面减反射膜的实验条件下,利用仅100 nm的有效吸收厚度,实现了31%的外量子效率.基于这个数值推算得到量子阱的光吸收系数达到3.7104cm-1,该数值高于传统透射实验测量体材料和量子阱结果.此外,还利用InAsSb/GaSb量子阱材料体系进行了2 m以上波长红外探测的探索.利用上述现象,有望在提高现有器件性能的同时开发出新颖的光-电转换器件.

English Abstract

参考文献 (50)

目录

    /

    返回文章
    返回