搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于CHSH不等式几何解释的“X”态量子非局域关联检验

曾柏云 辜鹏宇 胡强 贾欣燕 樊代和

引用本文:
Citation:

基于CHSH不等式几何解释的“X”态量子非局域关联检验

曾柏云, 辜鹏宇, 胡强, 贾欣燕, 樊代和

Quantum nonlocal test of “X” state based on geometric interpretation of CHSH inequality

Zeng Bai-Yun, Gu Peng-Yu, Hu Qiang, Jia Xin-Yan, Fan Dai-He
PDF
HTML
导出引用
  • 量子非局域关联现象是量子理论区别于经典理论的重要特征之一. “X”态作为一种典型的量子混合态, 基于其进行的量子非局域关联的检验研究, 不论对验证量子理论的正确性, 还是在量子信息论的应用领域研究, 都具有重要的意义. 本文在基于传统Clauser-Horne-Shimony-Holt (CHSH)不等式进行量子非局域关联检验的基础上, 提出了一种基于“X”态几何解释的量子非局域关联检验策略. 利用“X”态的几何解释策略, 可使物理图像更为直观地研究检验时最优化测量基选取, 以及可获得的最大CHSH不等式检验值等. 最后给出了基于CHSH不等式几何解释策略, “X”态成功进行量子非局域关联检验的参数范围.
    Quantum nonlocal correlation is one of the important features that distinguish the quantum theory from classical theory. As a typical quantum mixed state, the study of quantum nonlocal correlation based on the “X” state is of great importance for the verification of the correctness of quantum theory and the application of quantum information theory. In this work, with the traditional Clauser-Horne-Shimony-Holt (CHSH) inequality testing for quantum nonlocal correlations, we propose a strategy for testing the quantum nonlocal correlations based on the geometric interpretation of the “X” state. By using the geometric interpretation of the “X” state, which is described by the transform of Bloch sphere, it is possible to investigate the optimal selection of measurement settings. The maximum value of CHSH inequalities can also obtained from the physical images. Finally, the range of parameters for a successful quantum nonlocal correlation testing based on the CHSH inequality for the “X” state is studied. The results show that when $f = 1$, the “X” state will be reduced to a normal pure entangled state, and the quantum nonlocal correlation testing results are in full agreement with the traditional ones. This result proves the correctness of the geometric interpretation strategy proposed in this work. When$f \lt 1$, only some of the “X” states can be used for e successfully testing the quantum nonlocal correlations. It is also found that the range of fidelity values that can successfully test the quantum nonlocal correlations will be further increased by increasing the values of r. In particular, when r = 1, the range of fidelity value will reach a largest one (e.g. $f \gt 0.781$). The results in this work can provide the reference for experimentally testing the quantum nonlocal correlation by using the “X” state.
      通信作者: 樊代和, dhfan@swjtu.edu.cn
    • 基金项目: 计算物理国防科技重点实验室项目(批准号: 6142A05180401)和国家自然科学基金 (批准号: 12147208)资助的课题.
      Corresponding author: Fan Dai-He, dhfan@swjtu.edu.cn
    • Funds: Project supported by the Key Laboratory Project of Computational Physics of National Defense Science and Technology, China (Grant No. 6142A05180401) and the National Natural Science Foundation of China (Grant No. 12147208).
    [1]

    Einstein A, Podolsky B, Rosen N 1935 Phys. Rev. 47 777Google Scholar

    [2]

    Chen Y A, Zhang Q, Chen T Y, et al. 2021 Nature 589 214Google Scholar

    [3]

    Zhang X, Li H O, Cao G, Xiao M, Guo G C, Guo G P 2019 Nat. Sci. Rev. 6 32Google Scholar

    [4]

    Horodecki R 2021 arXiv: 2103.07712 v2 [quant-ph]

    [5]

    Bell J S 1964 Physics 1 195Google Scholar

    [6]

    Clauser J F, Horne M A, Shimony A, Holt R A 1969 Phys. Rev. Lett. 23 880Google Scholar

    [7]

    Freedman S J, Clauser J F 1972 Phys. Rev. Lett. 28 938Google Scholar

    [8]

    Aspect A, Dalibard J, Roger G 1982 Phys. Rev. Lett. 49 1804Google Scholar

    [9]

    Collins D, Gisin N, Linden N, Massar S, Popescu S 2002 Phys. Rev. Lett. 88 040404Google Scholar

    [10]

    Collins D, Gisin N 2004 J. Math. Phys. 37 1775Google Scholar

    [11]

    Mermin N D 1990 Phys. Rev. Lett. 65 1838Google Scholar

    [12]

    Ardehali M 1992 Phys. Rev. A 46 5375Google Scholar

    [13]

    Belinskiĭ A, Klyshko D N 1993 Phys. Usp. 36 653Google Scholar

    [14]

    Greenberger D M, Horne M A, Shimony A, Zeilinger A 1990 Am. J. Phys. 58 1131Google Scholar

    [15]

    Hardy L 1993 Phys. Rev. Lett. 71 1665Google Scholar

    [16]

    Kim J H, Chae J W, Jeong Y C, Kim Y H 2022 J. Korean Phys. Soc. 80 203Google Scholar

    [17]

    Singh J, Ghosh S, Arvind, Goyal S K 2021 Phys. Lett. A 392 127158Google Scholar

    [18]

    Koga J I, Kimura G, Maeda K 2018 Phys. Rev. A 97 062338Google Scholar

    [19]

    Seiler J, Strohm T, Schleich W P 2021 Phys. Rev. A 104 032218Google Scholar

    [20]

    Werner R F 1989 Phys. Rev. A 40 4277Google Scholar

    [21]

    Zhang Y S, Huang Y F, Li C F, Guo G C 2002 Phys. Rev. A 66 062315Google Scholar

    [22]

    Yu T, Eberly J 2007 Quantum Inf. Comput. 7 459

    [23]

    Shi J D, Wu T, Song X K, Ye L 2014 Quantum Inf. Process. 13 1045Google Scholar

    [24]

    Namitha C, Satyanarayana S 2018 J. Phys. B:At. Mol. Opt. 51 045506Google Scholar

    [25]

    Mishra S, Thapliyal K, Pathak A, Venugopalan A 2022 Quantum Inf. Process. 21 1Google Scholar

    [26]

    Guo Y N, Peng H P, Zeng K, Wang G Y 2020 Quantum Inf. Process. 19 1Google Scholar

    [27]

    刘晋, 缪波, 胡强, 樊代和 2020 量子光学学报 26 6Google Scholar

    Liu J, Miu B, Hu Q, Fan D H 2020 J. Quantum Opt. 26 6Google Scholar

    [28]

    石名俊, 杜江峰, 朱栋培, 阮图南 2000 物理学报 49 1912Google Scholar

    Shi M J, Du J F, Zhu D P, Ruan T N 2000 Acta Phys. Sin. 49 1912Google Scholar

    [29]

    Connes A, Zagier D 2007 Am. Math. Mon. 114 909Google Scholar

  • 图 1  基于CHSH不等式的Bloch球表示图. 左右两个Bloch球分别代表A和B两个系统, 它们之间的关系由一个关联矩阵K进行描述. ${\boldsymbol{j}}$${\boldsymbol{q}}$表示A系统中的两个测量方向, ${\boldsymbol{p}}$${\boldsymbol{t}}$表示B系统中的两个测量方向

    Fig. 1.  Diagram of Bloch ball representation based on CHSH inequality. The left and right Bloch sphere represents the two sub-system A and B, respectively. The relationship between them is described by a correlation matrix K. ${\boldsymbol{j}}$ and ${\boldsymbol{q}}$ represents the two measurement directions in system A, ${\boldsymbol{p}}$ and ${\boldsymbol{t}}$ represents the two measurement directions in system B.

    图 2  将关联矩阵K作用于B系统后的Bloch球表示图. 其中A系统的Bloch球保持不变, B系统的Bloch球受关联矩阵K的影响而发生改变. 两系统间的关联由单位矩阵I来描述

    Fig. 2.  The Bloch sphere representation diagram by applying the correlation matrix K to system B. The Bloch sphere of system A keep constant. The Bloch sphere of system B is changed. The correlation between two systems is described by the unit matrix I.

    图 3  B系统Bloch球退变为一椭圆平面时的表示图 (a)向量 ${{\boldsymbol{p}}_K}$在椭圆上的交点为${B_1}$, 向量${{\boldsymbol{t}}_K}$在椭圆上的交点是${B_2}$, 红色虚线表示向量${{\boldsymbol{p}}_K} + {{\boldsymbol{t}}_K}$, 橙色点划线表示向量${{\boldsymbol{p}}_K} - {{\boldsymbol{t}}_K}$; (b) 向量${{\boldsymbol{p}}_K}$在椭圆上的交点是${C_2}$, 向量${{\boldsymbol{t}}_K}$在椭圆上的交点是${C_3}$, 橙色点划线表示最大期望值${S_{\max }}$

    Fig. 3.  Diagram of elliptic plane when the Bloch sphere of system B is changed: (a) The intersection of vector ${{\boldsymbol{p}}_K}$ on the ellipse is ${B_1}$, the intersection of vector ${{\boldsymbol{t}}_K}$ on the ellipse is ${B_2}$. The red dashed line indicates vector ${{\boldsymbol{p}}_K} + {{\boldsymbol{t}}_K}$, and the orange dotted line indicates vector ${{\boldsymbol{p}}_K} - {{\boldsymbol{t}}_K}$. (b) The intersection of vector ${{\boldsymbol{p}}_K}$ on the ellipse is ${C_2}$ , and the intersection of vector ${{\boldsymbol{t}}_K}$ on the ellipse is ${C_3}$. The orange dotted line indicates the maximum expectation value of ${S_{\max }}$.

    图 4  在不同保真度f下, ${S_{\max }}$r的变化关系图

    Fig. 4.  Plot of ${S_{\max }}$ vs. r under different values of fidelity f.

    图 5  在不同r下, ${S_{\max }}$随保真度f的变化关系图

    Fig. 5.  Plot of ${S_{\max }}$ vs. fidelity f under different values of r.

    图 6  ${f_{\min }}$r的变化关系图

    Fig. 6.  Plot of ${f_{\min }}$vs. r.

    图 7  ${S_{\max }}$随保真度fr的变化关系图

    Fig. 7.  Plot of ${S_{\max }}$ vs. fidelity f and r.

  • [1]

    Einstein A, Podolsky B, Rosen N 1935 Phys. Rev. 47 777Google Scholar

    [2]

    Chen Y A, Zhang Q, Chen T Y, et al. 2021 Nature 589 214Google Scholar

    [3]

    Zhang X, Li H O, Cao G, Xiao M, Guo G C, Guo G P 2019 Nat. Sci. Rev. 6 32Google Scholar

    [4]

    Horodecki R 2021 arXiv: 2103.07712 v2 [quant-ph]

    [5]

    Bell J S 1964 Physics 1 195Google Scholar

    [6]

    Clauser J F, Horne M A, Shimony A, Holt R A 1969 Phys. Rev. Lett. 23 880Google Scholar

    [7]

    Freedman S J, Clauser J F 1972 Phys. Rev. Lett. 28 938Google Scholar

    [8]

    Aspect A, Dalibard J, Roger G 1982 Phys. Rev. Lett. 49 1804Google Scholar

    [9]

    Collins D, Gisin N, Linden N, Massar S, Popescu S 2002 Phys. Rev. Lett. 88 040404Google Scholar

    [10]

    Collins D, Gisin N 2004 J. Math. Phys. 37 1775Google Scholar

    [11]

    Mermin N D 1990 Phys. Rev. Lett. 65 1838Google Scholar

    [12]

    Ardehali M 1992 Phys. Rev. A 46 5375Google Scholar

    [13]

    Belinskiĭ A, Klyshko D N 1993 Phys. Usp. 36 653Google Scholar

    [14]

    Greenberger D M, Horne M A, Shimony A, Zeilinger A 1990 Am. J. Phys. 58 1131Google Scholar

    [15]

    Hardy L 1993 Phys. Rev. Lett. 71 1665Google Scholar

    [16]

    Kim J H, Chae J W, Jeong Y C, Kim Y H 2022 J. Korean Phys. Soc. 80 203Google Scholar

    [17]

    Singh J, Ghosh S, Arvind, Goyal S K 2021 Phys. Lett. A 392 127158Google Scholar

    [18]

    Koga J I, Kimura G, Maeda K 2018 Phys. Rev. A 97 062338Google Scholar

    [19]

    Seiler J, Strohm T, Schleich W P 2021 Phys. Rev. A 104 032218Google Scholar

    [20]

    Werner R F 1989 Phys. Rev. A 40 4277Google Scholar

    [21]

    Zhang Y S, Huang Y F, Li C F, Guo G C 2002 Phys. Rev. A 66 062315Google Scholar

    [22]

    Yu T, Eberly J 2007 Quantum Inf. Comput. 7 459

    [23]

    Shi J D, Wu T, Song X K, Ye L 2014 Quantum Inf. Process. 13 1045Google Scholar

    [24]

    Namitha C, Satyanarayana S 2018 J. Phys. B:At. Mol. Opt. 51 045506Google Scholar

    [25]

    Mishra S, Thapliyal K, Pathak A, Venugopalan A 2022 Quantum Inf. Process. 21 1Google Scholar

    [26]

    Guo Y N, Peng H P, Zeng K, Wang G Y 2020 Quantum Inf. Process. 19 1Google Scholar

    [27]

    刘晋, 缪波, 胡强, 樊代和 2020 量子光学学报 26 6Google Scholar

    Liu J, Miu B, Hu Q, Fan D H 2020 J. Quantum Opt. 26 6Google Scholar

    [28]

    石名俊, 杜江峰, 朱栋培, 阮图南 2000 物理学报 49 1912Google Scholar

    Shi M J, Du J F, Zhu D P, Ruan T N 2000 Acta Phys. Sin. 49 1912Google Scholar

    [29]

    Connes A, Zagier D 2007 Am. Math. Mon. 114 909Google Scholar

  • [1] 曾柏云, 辜鹏宇, 蒋世民, 贾欣燕, 樊代和. Markov环境下“X”态基于CHSH不等式的量子非局域关联检验. 物理学报, 2023, 72(5): 050301. doi: 10.7498/aps.72.20222218
    [2] 胡强, 曾柏云, 辜鹏宇, 贾欣燕, 樊代和. 退相干条件下两比特纠缠态的量子非局域关联检验. 物理学报, 2022, 71(7): 070301. doi: 10.7498/aps.71.20211453
    [3] 刘晋, 缪波, 贾欣燕, 樊代和. 基于Hardy-type佯谬的混合态高概率量子非局域关联检验. 物理学报, 2019, 68(23): 230302. doi: 10.7498/aps.68.20191125
    [4] 叶世强, 陈小余. 基于量子相干性的四体贝尔不等式构建. 物理学报, 2017, 66(20): 200301. doi: 10.7498/aps.66.200301
    [5] 郑伟真, 赵斌, 胡广月, 郑坚. 稀疏膨胀过程中几何位形对于电子非局域热传导的影响. 物理学报, 2015, 64(19): 195201. doi: 10.7498/aps.64.195201
    [6] 王斌, 薛建议, 贺好艳, 朱德兰. 基于线性矩阵不等式的一类新羽翼倍增混沌分析与控制. 物理学报, 2014, 63(21): 210502. doi: 10.7498/aps.63.210502
    [7] 赵加强, 曹连振, 逯怀新, 王晓芹. 三比特类GHZ态的Bell型不等式和非定域性. 物理学报, 2013, 62(12): 120301. doi: 10.7498/aps.62.120301
    [8] 饶黄云, 刘义保, 江燕燕, 郭立平, 王资生. 三能级混合态的量子几何相位. 物理学报, 2012, 61(2): 020302. doi: 10.7498/aps.61.020302
    [9] 赵加强, 曹连振, 王晓芹, 逯怀新. 三光子GHZ态中不同Bell型不等式的实验研究. 物理学报, 2012, 61(17): 170301. doi: 10.7498/aps.61.170301
    [10] 李尊懋, 熊庄, 代丽丽. 几何活性原子态的计算. 物理学报, 2010, 59(11): 7824-7829. doi: 10.7498/aps.59.7824
    [11] 赵加强, 逯怀新. 原子偶极压缩的相干控制和Cauchy-Schwarz不等式的破坏. 物理学报, 2010, 59(11): 7875-7879. doi: 10.7498/aps.59.7875
    [12] 周本元, 黄晖, 李高翔. 三模高斯态光场非局域性的增强. 物理学报, 2009, 58(3): 1679-1684. doi: 10.7498/aps.58.1679
    [13] 陈立冰, 谭鹏, 董少光, 路洪. 利用二粒子部分纠缠态实现开靶目标的非局域量子可控非(CNOT)门的受控操作. 物理学报, 2009, 58(10): 6772-6778. doi: 10.7498/aps.58.6772
    [14] 黄伟其, 王晓允, 张荣涛, 于示强, 秦朝建. 多孔硅量子点中的电子局域态. 物理学报, 2009, 58(7): 4652-4658. doi: 10.7498/aps.58.4652
    [15] 张善卿. 一些直接代数方法的几何解释及应用. 物理学报, 2008, 57(3): 1335-1338. doi: 10.7498/aps.57.1335
    [16] 夏云杰, 王光辉, 杜少将. 双模最小关联混合态作为量子信道实现量子隐形传态的保真度. 物理学报, 2007, 56(8): 4331-4336. doi: 10.7498/aps.56.4331
    [17] 郭德军, 单传家, 夏云杰. 内禀退相干下Tavis-Cummings模型中原子的纠缠演化与贝尔不等式破坏. 物理学报, 2007, 56(4): 2139-2147. doi: 10.7498/aps.56.2139
    [18] 石名俊, 杜江峰, 朱栋培, 阮图南. 混合纠缠态的几何描述. 物理学报, 2000, 49(10): 1912-1918. doi: 10.7498/aps.49.1912
    [19] 高 涛, 王红艳, 易有根, 谭明亮, 朱正和, 孙 颖, 汪小琳, 傅依备. PuO分子X5Σ-态的势能函数及热力学函数的量子力学计算. 物理学报, 1999, 48(12): 2222-2227. doi: 10.7498/aps.48.2222
    [20] 蔡树芝, 牟季美, 张立德, 程本培. 纳米非晶氮化硅键态结构的X射线径向分布函数研究. 物理学报, 1992, 41(10): 1620-1626. doi: 10.7498/aps.41.1620
计量
  • 文章访问数:  3065
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-13
  • 修回日期:  2022-04-12
  • 上网日期:  2022-08-25
  • 刊出日期:  2022-09-05

/

返回文章
返回