搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

离轴螺旋长周期光纤光栅特性研究

王剑 马超 王东辉 孟令知 王洪业 苑立波

引用本文:
Citation:

离轴螺旋长周期光纤光栅特性研究

王剑, 马超, 王东辉, 孟令知, 王洪业, 苑立波

Properties of off-axis helical long-period fiber gratings

Wang Jian, Ma Chao, Wang Dong-Hui, Meng Ling-Zhi, Wang Hong-Ye, Yuan Li-Bo
PDF
HTML
导出引用
  • 本文研究一种具有大恒温区的新型四电极电弧放电装置, 用于制备高质量离轴螺旋长周期光纤光栅. 较大的恒温加热区更利于释放光纤应力, 使得光纤器件的离轴量小. 为了确定高质量离轴螺旋长周期光纤光栅的关键参数, 借助于光束传播法研究单模光纤在不同耦合长度、螺距、纤芯折射率、包层折射率、纤芯直径、包层直径、离轴量条件下对螺旋长周期光纤光栅透射光谱的影响. 由于传统方法难以对微小离轴量的螺旋长周期光纤光栅进行离轴量测量, 采用光谱对比反推离轴量的方法对螺旋器件的离轴量做出估计. 根据理论计算获得的透射光谱与实际光谱的对比, 得到螺旋光纤离轴量的估值分别为0.12, 0.13和0.16 µm. 最后, 对所研装置制备的离轴螺旋长周期光纤光栅的抗扭转性能及光栅制备的重复性进行实验, 实验表明, 制备的光栅有一定的抗扭转性及较好的光谱重复性.
    In this paper, a new four-electrode arc discharge device with large constant temperature region is designed, which is used to prepared high-quality off-axis helical long-period fiber grating. The larger constant temperature heating area is more conducive to releasing the stress of optical fiber, so that the prepared device is less off-axis. In order to show that low off-axis is a key parameter of high-quality off-axis helical long-period fiber grating, the effects of single mode fiber on transmission spectrum of off-axis helical long-period fiber grating under different coupling lengths, pitches, core refractive indexes, cladding refractive indexes, core diameters, cladding diameters and off-axis quantity are simulated by using beam propagation method. Since traditional methods are difficult to measure the off-axis helical long-period fiber grating with small off-axis quantity, the off-axis quantity of the prepared device is estimated by using the method of spectral comparison and back-thrust off-axis quantity in this work. The off-axis helical long-period fiber grating is prepared by using the established processing device. The off-axis quantities of the prepared devices are about 0.12, 0.13 and 0.16 µm, respectively, according to the comparison between the simulated transmission spectrum and the actual spectrum. Finally, experiments on the torsional resistance and repeatability of the off-axis helical long-period fiber grating prepared by the device are carried out. The experimental results show that the prepared grating has certain torsional resistance and good spectral repeatability.
      通信作者: 苑立波, lbyuan@vip.sina.com
    • 基金项目: 国家自然科学基金(批准号: 61827819, 62265004)和广西八桂学者专项(批准号: 2019A38)资助的课题.
      Corresponding author: Yuan Li-Bo, lbyuan@vip.sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61827819, 62265004) and the Bagui Scholars Program of Guangxi Zhuang Autonomous Region, China (Grant No. 2019A38).
    [1]

    Yang L, Xue L L, Su J, Qian J R 2011 Chin. Opt. Lett. 9 070603Google Scholar

    [2]

    Xu H X, Yang L 2013 Opt. Lett. 38 1978Google Scholar

    [3]

    Zhu C L, Wang L, Zhao H, Bing Z H, Zhao Y, Li H P 2022 Opt. Commun. 503 127452Google Scholar

    [4]

    Rao X F, Yang L, Su J, Ban Q M, Deng X, Wang W 2022 Opt. Lett. 47 5758Google Scholar

    [5]

    Ma C, Wang D, Deng H, Yuan L B 2022 Opt. Fiber. Technol. 73 103019Google Scholar

    [6]

    Liu Y Q, Liu Q, Chiang K S 2009 Opt. Lett. 34 1726Google Scholar

    [7]

    Ryu H S, Park Y, Oh S T, Chung Y, Kim D Y 2003 Opt. Lett. 28 155Google Scholar

    [8]

    Wang Y P, Xiao L M, Wang D N, Jin W 2007 Opt. Lett. 32 1035Google Scholar

    [9]

    Fu C, Ni Y Q, Sun T, Wang Y, Ding S, Vidakovic M 2021 Adv. Struct. Eng. 24 1248Google Scholar

    [10]

    Zhao Y Y, Liu S, Luo J X, Chen Y P, Fu C L, Xiong C, Wang Y, Jing S Y, Bai Z Y, Liao C R, Wang Y P 2020 J. Lightwave Technol. 38 2504Google Scholar

    [11]

    Liu Y, Yuan L B 2020 Optik 223 165557Google Scholar

    [12]

    Gao K Y, Zhang Z, Huang B, Hao H, Zhao H, Wang P, Li H P 2022 J Opt. Soc. Am. B 39 1075Google Scholar

    [13]

    Shen X, Hu X W, Yang L Y, Dai N L, Wu J J, Zhang F F, Peng J G, Li H Q, Li J Y 2017 Opt. Express 25 10405Google Scholar

    [14]

    Jiang C, Liu Y Q, Zhao Y H, Mou C B, Wang T Y 2019 J. Lightwave Technol. 37 889Google Scholar

    [15]

    Ma C, Wang J, Yuan L B 2021 Photonics 8 193Google Scholar

    [16]

    Rao Y J, Wang Y P, Ran Z L, Zhu T 2003 J. Lightwave Technol. 21 1320Google Scholar

    [17]

    Wang Y P, Chen J P, Rao Y J 2005 J. Opt. Soc. Am. B 22 1167Google Scholar

    [18]

    Zhang L, Liu Y, Cao X, Wang T 2016 IEEE Sens. J. 16 4253Google Scholar

    [19]

    Kong X D, Ren K L, Ren L Y, Liang J, Ju H J 2017 Appl. Opt. 56 4702Google Scholar

    [20]

    Zhao H, Li H P 2021 Photonics 8 106Google Scholar

    [21]

    Shao L P, Liu S, Zhou M, Huang Z, Bao W J, Bai Z Y, Liu Z, Zhu G X, Sun Z Y, Zhong J L, Wang Y P 2021 Opt. Express 29 43371Google Scholar

    [22]

    Mizushima R, Detani T, Zhu C L, Wang P, Zhao H, Li H P 2021 J. Lightwave. Technol. 39 3269Google Scholar

    [23]

    Ren K L, Ren L Y, Liang J, Kong X D, Ju H J, Xu Y P, Wu Z X 2016 Appl. Opt. 55 9675Google Scholar

    [24]

    Liu W, Duan S, Du H, Jiang H, Sun C, Jin X, Zhao L, Geng T, Tong C, Yuan L B 2019 J. Mod. Optic. 66 1215Google Scholar

    [25]

    Sun B, Wei W, Liao C, Zhang L, Zhang Z, Chen M Y, Wang Y 2017 IEEE Photonic. Tech. L. 29 873Google Scholar

    [26]

    Bai Y, He Z, Bai J, Dang S 2021 Appl. Phys. B 127 1Google Scholar

    [27]

    Liu Y, Deng H, Yuan L B 2019 Opt. Fiber. Technol. 52 101950Google Scholar

    [28]

    Tachikura M 1984 Appl. Opt. 23 492Google Scholar

    [29]

    Xu H X, Yang L, Han Z F, Qian J R 2013 Opt. Commun. 291 207Google Scholar

    [30]

    Liu S, Zhou M, Zhang Z, Sun Z Y, Bai Z Y, Wang Y P 2022 Opt. Lett. 47 2602Google Scholar

    [31]

    Fu C, Wang Y P, Liu S, Bai Z Y, Liao C, He J, Wang Y P 2019 Sensors 19 4473Google Scholar

    [32]

    Ma M, Lian Y, Wang Y P, Lu Z 2021 Front. Phys. 9 773505Google Scholar

    [33]

    Li Z L, Liu S, Bai Z Y, Fu C L, Zhang Y, Sun Z Y, Liu X Y, Wang Y P 2018 Opt. Express 26 24114Google Scholar

    [34]

    Liu S, Zhou M, Shao L P, Zhang Z, Bai Z Y, Wang Y P 2022 Opt. Express 30 21085Google Scholar

  • 图 1  (a) 大恒温区的四电极电弧放电OAH-LPFG加工装置; (b) OAH-LPFG结构; (c) OAH-LPFG的某一横截面; (d) 四电极加工装置结构; (e) 二电极加工装置结构

    Fig. 1.  (a) Four electrodes arc discharge OAH-LPFG processing device in large constant temperature region; (b) OAH-LPFG structure; (c) a cross section of OAH-LPFG; (d) structure of the four-electrode machining device; (e) structure of the two-electrode machining device.

    图 2  (a) 四电极未进行电弧放电时红外热像仪拍摄的温度图; (b) 四电极电弧放电加热光纤图; (c) 四电极电弧放电加热光纤时, 红外热像仪拍摄的温度图; (d) 四电极电弧放电时, 光纤加热区域最高温度的波动情况

    Fig. 2.  (a) Temperature map taken by infrared thermal imager when arc discharge is not carried out on four electrodes; (b) four-electrode arc discharge heating fiber diagram; (c) temperature map taken by infrared thermal imager when the optical fiber is heated by four-electrode arc discharge; (d) fluctuation of the maximum temperature in the optical fiber heating region during the four-electrode arc discharge.

    图 3  (a) 光纤中模式有效折射率随波长的变化. 不同光栅周期Λ及耦合长度Lc的透射光谱 (b) Λ = 900 µm, Lc = 50 mm; (c) Λ = 700 µm, Lc = 29 mm; (d) Λ = 600 µm, Lc = 17.1 mm

    Fig. 3.  (a) Pattern effective refractive index changes with wavelength in fiber. Transmission spectrum with different grating period and coupling length: (b) Λ = 900 µm, Lc = 50 mm; (c) Λ = 700 µm, Lc = 29 mm; (d) Λ = 600 µm, Lc = 17.1 mm.

    图 4  不同离轴量的模式耦合过程对比图 (a) 0.12 µm离轴量; (b) 0.24 µm离轴量

    Fig. 4.  Comparison diagram of mode coupling processes for different off-axis quantities: (a) 0.12 µm off-axis quantity; (b) 0.24 µm off-axis quantity.

    图 5  OAH-LPFG参数与透射光谱的关系 (a)耦合长度Lc; (b) 螺距$ \varLambda $; (c)纤芯折射率nco; (d)包层折射率ncl; (e)纤芯直径dco; (f)包层直径dcl. 透射光谱与离轴量d的关系 (g) OAH-LPFG的$ {\text{OA}}{{\text{M}}_{{\text{1,2}}}} $模式; (h) OAH-LPFG的$ {\text{OA}}{{\text{M}}_{{\text{1,4}}}} $模式

    Fig. 5.  Relation between OAH-LPFG parameters and transmission spectrum: (a) Coupling length Lc; (b) pitch $ \varLambda $; (c) core refractive index nco; (d) cladding refractive index ncl; (e) core diameter dco; (f) cladding diameter dcl. Relationship between transmission spectrum and off-axis quantity d: (g) OAH-LPFG $ {\text{OA}}{{\text{M}}_{{\text{1,2}}}} $ mode; (h) OAH-LPFG $ {\text{OA}}{{\text{M}}_{{\text{1,4}}}} $ mode.

    图 6  OAH-LPFG参数对透射光谱非耦合区的影响 (a)耦合长度Lc; (b)螺距$ \varLambda $; (c)纤芯折射率nco; (d) 包层折射率ncl; (e)纤芯直径dco; (f) 包层直径dcl. 透射光谱非耦合区与离轴量d的关系 (g) OAH-LPFG的$ {\text{OA}}{{\text{M}}_{{\text{1,2}}}} $模式; (h) OAH-LPFG的$ {\text{OA}}{{\text{M}}_{{\text{1,4}}}} $模式

    Fig. 6.  Influence of OAH-LPFG parameters on the uncoupled region of transmission spectrum: (a) Coupling length Lc; (b) pitch $ \varLambda $; (c) core refractive index nco; (d) cladding refractive index ncl; (e) core diameter dco; (f) cladding diameter dcl. Relationship between the uncoupled region of transmission spectrum and the off-axis quantity d: (g) OAH-LPFG $ {\text{OA}}{{\text{M}}_{{\text{1,2}}}} $ mode; (h) OAH-LPFG $ {\text{OA}}{{\text{M}}_{{\text{1,4}}}} $ mode

    图 7  基于四电极电弧得到的不同周期下制备的OAH-LPFG透射光谱 (a) 870 µm; (b) 750 µm; (c) 645 µm. (d) 透射光谱在1.21—1.30 µm波长范围的插入损耗及波动情况

    Fig. 7.  OAH-LPFG transmission spectrum obtained based on four-electrode arc: (a) 870 µm; (b) 750 µm; (c) 645 µm. (d) Insertion loss and fluctuation of transmission spectrum in the range of wavelength 1.21–1.30 µm.

    图 8  未被加工光纤与OAH-LPFG离轴量d的显微镜照片(a) 未被加工光纤; (b) 周期870 µm OAH-LPFG; (c) 周期750 µm OAH-LPFG; (d) 周期645 µm OAH-LPFG

    Fig. 8.  Microscope observation of the unprocessed fiber and OAH-LPFG off-axis quantity d: (a) Unprocessed fiber; (b) periodic 870 µm OAH-LPFG; (c) periodic 750 µm OAH-LPFG; (d) periodic 645 µm OAH-LPFG.

    图 9  匹配的透射光谱 (a) 周期870 µm; (b) 周期750 µm; (c) 周期645 µm

    Fig. 9.  Matched transmission spectra: (a) Period of 870 µm; (b) period of 750 µm; (c) period of 645 µm.

    图 10  (a) 康宁单模光纤的横截面的显微图像; (b) 康宁单模光纤在光波长532 nm下测得的三维折射率轮廓图; (c) 10个离轴螺旋长周期光栅样品的透射光谱图

    Fig. 10.  (a) A microscopic image of a cross section of Corning single mode fiber; (b) 3D refractive index profile of corning single-mode fiber measured at optical wavelength 532 nm; (c) transmission spectra of 10 samples of off-axis helical long-period grating.

    图 11  (a) 重复实验中光栅样品耦合峰波长的变化; (b) 重复实验中光栅样品耦合峰损耗的变化

    Fig. 11.  (a) Change of coupling peak wavelength of grating samples in repeated experiment; (b) change of coupling peak loss of grating samples in repeated experiments.

    图 12  (a) 单模光纤横截面图; (b) 单模光纤扭转后的纵向截面图; (c) 偏芯光纤横截面图; (d) 偏芯光纤扭转后的纵向截面图

    Fig. 12.  (a) Cross section of single-mode fiber; (b) longitudinal cross-section of single-mode fiber after torsion; (c) cross-sectional diagram of eccentric fiber; (d) longitudinal cross-section of the eccentric fiber after torsion.

    图 13  (a) 单模光纤扭转时断的情况, 最大波动为4.54 rad/m; (b) 偏芯光纤扭转时断的情况, 最大波动为4.01 rad/m

    Fig. 13.  (a) Breakage of single-mode fiber during torsion, and the maximum fluctuation is 4.54 rad/m; (b) breakage of eccentric fiber during torsion, and the maximum fluctuation is 4.01 rad/m.

    图 14  (a) 顺时针时不同扭转角度的耦合峰的的透射光谱; (b) 顺时针时波长与扭曲率的依赖关系; (c) 逆时针时不同扭转角度耦合峰的透射光谱; (d) 逆时针时波长与扭曲率的依赖关系

    Fig. 14.  (a) Transmission spectra of coupling peaks with different torsion angles in clockwise direction; (b) dependence of clockwise wavelength on the distortion rate; (c) transmission spectra of coupling peaks with different torsion angles in counterclockwise direction; (d) dependence of counterclockwise wavelength on the distortion rate.

    表 1  计算参数

    Table 1.  Calculation parameter.

    耦合长度
    Lc/µm
    螺距
    $\varLambda$/µm
    纤芯折射率
    nco
    包层折射率
    ncl
    纤芯直径dco/µm包层直径dcl/µm离轴量
    d/µm
    18995—172458701.4611.4578.71250.3
    15495820—8901.4611.4578.71250.3
    184958701.4606—1.46131.4578.71250.3
    181958701.4611.4566—1.45738.71250.3
    177458701.4611.4578.6—9.31250.3
    189958701.4611.4578.7124.6—125.30.3
    19495, 13245, 10245, 8045, 7095,
    6345, 5795, 5495
    8701.4611.4578.71250.30—1.35
    9095, 7798, 6745, 5545, 5545,
    5145, 4845, 4595
    6801.4611.4578.71250.30—0.65
    下载: 导出CSV

    表 2  不同制备方法制备OAH-LPFG比较[18,19,25,27,33,34]

    Table 2.  Comparison of OAH-LPFG prepared by different preparation methods[18,19,25,27,33,34].

    结构制备方法透射光谱的最小损耗说明
    单模光纤螺旋长
    周期光纤光栅
    CO2激光 > 1 dB[18]
    < 1 dB[19]
    优点: 灵活、高品质; 缺点: 光路调试麻烦、昂贵
    氢氧火焰< 1 dB[33]
    ≈ 1 dB[34]
    优点: 加热面积较宽, 加热温度均匀; 缺点: 氢气有一定危险性
    二电极电弧放电> 1 dB[25]
    > 1 dB[27]
    优点: 简单灵活; 缺点: 恒温区较窄
    四电极电弧放电< 1 dB优点: 简单灵活、大恒温区、价格便宜; 缺点: 电弧需进一步优化
    下载: 导出CSV
  • [1]

    Yang L, Xue L L, Su J, Qian J R 2011 Chin. Opt. Lett. 9 070603Google Scholar

    [2]

    Xu H X, Yang L 2013 Opt. Lett. 38 1978Google Scholar

    [3]

    Zhu C L, Wang L, Zhao H, Bing Z H, Zhao Y, Li H P 2022 Opt. Commun. 503 127452Google Scholar

    [4]

    Rao X F, Yang L, Su J, Ban Q M, Deng X, Wang W 2022 Opt. Lett. 47 5758Google Scholar

    [5]

    Ma C, Wang D, Deng H, Yuan L B 2022 Opt. Fiber. Technol. 73 103019Google Scholar

    [6]

    Liu Y Q, Liu Q, Chiang K S 2009 Opt. Lett. 34 1726Google Scholar

    [7]

    Ryu H S, Park Y, Oh S T, Chung Y, Kim D Y 2003 Opt. Lett. 28 155Google Scholar

    [8]

    Wang Y P, Xiao L M, Wang D N, Jin W 2007 Opt. Lett. 32 1035Google Scholar

    [9]

    Fu C, Ni Y Q, Sun T, Wang Y, Ding S, Vidakovic M 2021 Adv. Struct. Eng. 24 1248Google Scholar

    [10]

    Zhao Y Y, Liu S, Luo J X, Chen Y P, Fu C L, Xiong C, Wang Y, Jing S Y, Bai Z Y, Liao C R, Wang Y P 2020 J. Lightwave Technol. 38 2504Google Scholar

    [11]

    Liu Y, Yuan L B 2020 Optik 223 165557Google Scholar

    [12]

    Gao K Y, Zhang Z, Huang B, Hao H, Zhao H, Wang P, Li H P 2022 J Opt. Soc. Am. B 39 1075Google Scholar

    [13]

    Shen X, Hu X W, Yang L Y, Dai N L, Wu J J, Zhang F F, Peng J G, Li H Q, Li J Y 2017 Opt. Express 25 10405Google Scholar

    [14]

    Jiang C, Liu Y Q, Zhao Y H, Mou C B, Wang T Y 2019 J. Lightwave Technol. 37 889Google Scholar

    [15]

    Ma C, Wang J, Yuan L B 2021 Photonics 8 193Google Scholar

    [16]

    Rao Y J, Wang Y P, Ran Z L, Zhu T 2003 J. Lightwave Technol. 21 1320Google Scholar

    [17]

    Wang Y P, Chen J P, Rao Y J 2005 J. Opt. Soc. Am. B 22 1167Google Scholar

    [18]

    Zhang L, Liu Y, Cao X, Wang T 2016 IEEE Sens. J. 16 4253Google Scholar

    [19]

    Kong X D, Ren K L, Ren L Y, Liang J, Ju H J 2017 Appl. Opt. 56 4702Google Scholar

    [20]

    Zhao H, Li H P 2021 Photonics 8 106Google Scholar

    [21]

    Shao L P, Liu S, Zhou M, Huang Z, Bao W J, Bai Z Y, Liu Z, Zhu G X, Sun Z Y, Zhong J L, Wang Y P 2021 Opt. Express 29 43371Google Scholar

    [22]

    Mizushima R, Detani T, Zhu C L, Wang P, Zhao H, Li H P 2021 J. Lightwave. Technol. 39 3269Google Scholar

    [23]

    Ren K L, Ren L Y, Liang J, Kong X D, Ju H J, Xu Y P, Wu Z X 2016 Appl. Opt. 55 9675Google Scholar

    [24]

    Liu W, Duan S, Du H, Jiang H, Sun C, Jin X, Zhao L, Geng T, Tong C, Yuan L B 2019 J. Mod. Optic. 66 1215Google Scholar

    [25]

    Sun B, Wei W, Liao C, Zhang L, Zhang Z, Chen M Y, Wang Y 2017 IEEE Photonic. Tech. L. 29 873Google Scholar

    [26]

    Bai Y, He Z, Bai J, Dang S 2021 Appl. Phys. B 127 1Google Scholar

    [27]

    Liu Y, Deng H, Yuan L B 2019 Opt. Fiber. Technol. 52 101950Google Scholar

    [28]

    Tachikura M 1984 Appl. Opt. 23 492Google Scholar

    [29]

    Xu H X, Yang L, Han Z F, Qian J R 2013 Opt. Commun. 291 207Google Scholar

    [30]

    Liu S, Zhou M, Zhang Z, Sun Z Y, Bai Z Y, Wang Y P 2022 Opt. Lett. 47 2602Google Scholar

    [31]

    Fu C, Wang Y P, Liu S, Bai Z Y, Liao C, He J, Wang Y P 2019 Sensors 19 4473Google Scholar

    [32]

    Ma M, Lian Y, Wang Y P, Lu Z 2021 Front. Phys. 9 773505Google Scholar

    [33]

    Li Z L, Liu S, Bai Z Y, Fu C L, Zhang Y, Sun Z Y, Liu X Y, Wang Y P 2018 Opt. Express 26 24114Google Scholar

    [34]

    Liu S, Zhou M, Shao L P, Zhang Z, Bai Z Y, Wang Y P 2022 Opt. Express 30 21085Google Scholar

  • [1] 丁继飞, 刘文兵, 李含辉, 罗奕, 谢陈凯, 黄黎蓉. 大焦深离轴超透镜的设计与制作. 物理学报, 2021, 70(19): 197802. doi: 10.7498/aps.70.20202235
    [2] 张伟刚, 张严昕, 耿鹏程, 王标, 李晓兰, 王松, 严铁毅. 新型长周期光纤光栅的设计与研制进展. 物理学报, 2017, 66(7): 070704. doi: 10.7498/aps.66.070704
    [3] 李杨, 朱竹青, 王晓雷, 贡丽萍, 冯少彤, 聂守平. 离轴椭圆矢量光场传输中的光斑演变. 物理学报, 2015, 64(2): 024204. doi: 10.7498/aps.64.024204
    [4] 陈顺意, 丁攀峰, 蒲继雄. 离轴涡旋光束弱走离条件下的倍频效应. 物理学报, 2015, 64(24): 244204. doi: 10.7498/aps.64.244204
    [5] 陈顺意, 丁攀峰, 蒲继雄. 离轴径向偏振光束及其传输特性. 物理学报, 2015, 64(20): 204201. doi: 10.7498/aps.64.204201
    [6] 廖文英, 范万德, 李园, 陈君, 卜凡华, 李海鹏, 王新亚, 黄鼎铭. 新型全固态准晶体结构大模场光纤特性研究. 物理学报, 2014, 63(3): 034206. doi: 10.7498/aps.63.034206
    [7] 曹晔, 裴庸惟, 童峥嵘. 仅用一根局部微结构长周期光纤光栅实现温度与弯曲曲率的同时测量. 物理学报, 2014, 63(2): 024206. doi: 10.7498/aps.63.024206
    [8] 张银, 陈明阳, 周骏, 张永康. 微结构芯大模场平顶光纤及其传输特性分析. 物理学报, 2013, 62(17): 174211. doi: 10.7498/aps.62.174211
    [9] 易昌申, 戴世勋, 张培晴, 王训四, 沈祥, 徐铁峰, 聂秋华. 新型单模大模场红外硫系玻璃光子晶体光纤设计研究. 物理学报, 2013, 62(8): 084206. doi: 10.7498/aps.62.084206
    [10] 陈海云, 顾铮(一先), 杨颖. 镀膜长周期光纤光栅的单峰宽带滤波特性. 物理学报, 2012, 61(20): 200702. doi: 10.7498/aps.61.200702
    [11] 郭艳艳, 侯蓝田. 全固态八边形大模场光子晶体光纤的设计. 物理学报, 2010, 59(6): 4036-4041. doi: 10.7498/aps.59.4036
    [12] 曾祥楷, 饶云江. 长周期光纤光栅傅里叶模式耦合理论. 物理学报, 2010, 59(12): 8607-8614. doi: 10.7498/aps.59.8607
    [13] 朱涛, 宋韵, 饶云江, 朱永. CO2激光写入旋转折变型长周期光纤光栅的制作及理论分析. 物理学报, 2009, 58(7): 4738-4745. doi: 10.7498/aps.58.4738
    [14] 朱涛, 史翠华, 饶云江, 郑建成. CO2激光写入长周期光纤光栅的折变理论及实验研究. 物理学报, 2009, 58(9): 6316-6322. doi: 10.7498/aps.58.6316
    [15] 阮 锴, 张淳民, 赵葆常. 高层大气风场探测改型大光程差Sagnac干涉仪全视场角光程差与横向剪切量的精确计算. 物理学报, 2008, 57(9): 5435-5441. doi: 10.7498/aps.57.5435
    [16] 王 莉, 王庆峰, 王喜庆, 吕百达. 两束离轴高斯光束干涉场中的横向光涡旋. 物理学报, 2007, 56(1): 201-207. doi: 10.7498/aps.56.201
    [17] 徐新华, 崔一平. 矩形折射率调制型长周期光纤光栅传输谱的理论分析及数值计算. 物理学报, 2003, 52(1): 96-101. doi: 10.7498/aps.52.96
    [18] 王义平, 饶云江, 冉曾令, 朱 涛. 高频CO2激光脉冲写入的长周期光纤光栅传感器的特性研究. 物理学报, 2003, 52(6): 1432-1437. doi: 10.7498/aps.52.1432
    [19] 张东生, 姜 莉, 张伟刚, 李丽君, 范万德, 袁树忠, 开桂云, 董孝义. 长周期光纤光栅谐振波长与曝光量的变化关系. 物理学报, 2003, 52(12): 3087-3091. doi: 10.7498/aps.52.3087
    [20] 张广基, 许少鸿. 测量场致发光电功吸收的量热法. 物理学报, 1962, 18(5): 250-253. doi: 10.7498/aps.18.250
计量
  • 文章访问数:  3546
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-19
  • 修回日期:  2023-05-06
  • 上网日期:  2023-05-08
  • 刊出日期:  2023-07-05

/

返回文章
返回