搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用Weiss分子场理论对有外电场时铁电体系相变特征的研究

张晋鲁 李玉强 赵兴宇 黄以能

引用本文:
Citation:

用Weiss分子场理论对有外电场时铁电体系相变特征的研究

张晋鲁, 李玉强, 赵兴宇, 黄以能

Study on the phase transitions of ferroelectric systems by Weiss's molecular field theory with an external field

Zhang Jin-Lu, Li Yu-Qiang, Zhao Xing-Yu, Huang Yi-Neng
PDF
导出引用
  • Weiss分子场理论(WMFT)对晶体中顺磁-铁磁和顺电-铁电相变特征的定量描述是相当成功的. 由于是平均场理论,又可作为初步分析结构无序体系和复杂组分体系相变行为的理论依据. 但是迄今为止,并没有对有外场时WMFT的相变特征进行详细研究. 而对铁电体系,仅仅对分子取向为两个状态时WMFT的相变特征进行了研究. 另外,虽然铁磁与铁电体系的WMFT描述极为相似,但是由于两种体系中微观磁化和极化的单元不同,导致相应的数学描述与结果也有所不同. 本文首先对外电场中分子取向包含任意状态的铁电体系的WMFT相变特征, 包括自发极化、内能和比热以及静态极化率随温度变化进行严格推导, 然后对相变特征随外电场的演变进行了研究.结果表明: 1)无外场时,体系发生二级顺电-铁电相变,且随状态数的增加,相变温度减小, 这是与铁磁体系不同的地方,同时单分子的平均极化强度减小,而内能、比热和极化率增大; 2)外场的存在,使得体系原有的二级相变转化为弥散相变,且外场越强,弥散温区越大. 上述结果对深入研究铁电体系的相变,特别是弥散相变无疑是有益的.
    The descriptions of the paramagnetic-ferromagnetic and paraelectric-ferroelectric phase transitions (PTs) by Weiss's molecular field theory (WMFT) are quite successful, and the WMFT is also a theoretical basis of initial analysis of the PTs of structural disorder and complex compositional systems because of its mean-field characteristic. However, there is not any study on the PT behaviors of the WMFT with external field, and only the case of two orientational states of molecules for ferroelectric systems has been investigated by the WMFT. Although the descriptions of the above two kinds of PTs by the WMFT are quite similar, the exact ones and the corresponding results are different more or less due to the difference in microscopic unit between the magnetization and polarization In this work, the exact descriptions of the ferroelectric systems with arbitrary orientational states of molecules by the WMFT are provided, including the temperature dependences of the spontaneous polarization, the internal energy, the specific heat and the static polarizability, and then the evolutions of the PTs with an external field are studied. The obtained results are as follows. 1) Without the external field, the PTs of the systems are of the second order, and the transition temperatures and spontaneous polarizations decrease, which are different from those of the ferromagnetic systems, but the internal energy, the specific heat and the polarizability increase with the increase of the orientational states. 2) The external field drives the second order PT to a diffusive one, and diffusive temperature range becomes wider as the field is increases. The results mentioned above would benefit the deep studies of ferroelectric PT, especially the diffusive one.
    • 基金项目: 国家自然科学基金(批准号: 30860076)、 国家重点基础研究发展计划(批准号: 2012CB821500)、 新疆自治区高技术发展项目(批准号: 200916126) 和新疆自治区科技厅自然基金(批准号: 200821104, 200821184)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 30860076), the National Basic Research Program of China (Grant No. 2012CB821500), the Science and Technology Program of Xinjiang Uygur Autonomous Region, China (Grant No. 200916126), and the Natural Science Foundations of Xinjiang Uygur Autonomous Region, China (Grant Nos. 200821104, 200821184).
    [1]

    Weiss P 1907 J. de Phys. 6 661

    [2]

    Weiss P 1908 Physikalische Zeitschrift 9 358

    [3]

    Gans R 1920 Ann. de Phys. 63 382

    [4]

    Gans R 1922 Ann. de Phys. 66 396

    [5]

    Heisenberg W 1928 Z. Phys. A: Hadrons Nucl. 9 619

    [6]

    McKeehan L W 1930 Nature 126 952

    [7]

    Neel L 1932 Ann. de Phys. 17 5

    [8]

    Selwood P W 1933 J. Am. Chem. Soc. 55 3161

    [9]

    Neel L 1936 Ann. de Phys. 17 232

    [10]

    Bitter F 1938 Phys. Rev. 54 79

    [11]

    Neel L 1947 C. R. Acad. Sc. 224 1488

    [12]

    Neel L 1948 Ann. de Phys. 3 137

    [13]

    Anderson P W 1950 Phys. Rev. 79 705

    [14]

    Smart J S 1953 Rev. Modern Phys. 25 327

    [15]

    Rado G T, Folen V J 1960 J. Appl. Phys. 31 62

    [16]

    Haar D T, Lines M E 1962 Philosophical Transactions of the Royal Society of London Series A: Mathematical and Physical Sciences 254 521

    [17]

    Tsang T 1964 J. Chem. Phys. 40 729

    [18]

    Gianino P D, Grossbar N 1967 J. Appl. Phys. 38 129

    [19]

    Dionne G F 1970 J. Appl. Phys. 41 4874

    [20]

    Kaneyoshi T 1973 J. Phys. C: Solid State Phys. 6 3130

    [21]

    Southern B 1975 J. Phys. C: Solid State Phys. 8 L213

    [22]

    Idogaki T, Kimura I 1976 J. Phys. Soc. Jpn. 40 968

    [23]

    Ghatak S K, Moorjani K 1976 J. Phys. C: Solid State Phys. 9 L293

    [24]

    Dai D S, Qian K M 1987 Ferromagnetics (Vol. 1) (Beijing: Science Press) p102 (in Chinese) [戴道生, 钱昆明 1987 铁磁学(上册) (北京:科学出版社) 第102页]

    [25]

    Mitsui T, Tatsuzaki I, Nakamura E (Translated by Ni G J, Wang Y L, Lin S W, Yin Q R) 1983 An Introduction to the Physics of Ferroelectrics (Beijing: Science Press) p208 (in Chinese) [三井利夫, 达崎达, 中村英二著 (倪冠军, 王勇令, 林盛卫, 殷庆瑞译) 1983 铁电物理学导论(北京:科学出版社) 第208页]

    [26]

    Lu J M, Yu T Y, Yang Y L 1993 Science in China A 36 624

    [27]

    Fähnle M 2000 J. Magn. Magn. Mater. 210 L1

    [28]

    Ai S T, Zhong W L, Wang C L, Wang J F, Zhang P L 2000 Acta Phys. Sin. 51 1739 (in Chinese) [艾树涛, 钟维烈, 王春雷, 王矜奉, 张沛霖 2000 物理学报 51 1739]

    [29]

    Shen B G, Zhao J G, Zhan W S, Chen J C 1986 Acta Phys. Sin. 35 124 (in Chinese) [沈保根, 赵见高, 詹文山, 陈金昌 1986 物理学报 35 124]

    [30]

    Liu P Q 1987 Acta Phys. Sin. 36 540 (in Chinese) [刘品清 1987 物理学报 36 540]

    [31]

    Zhang C Z, Zhang G Y, Yu P 1992 Acta Phys. Sin. 41 1087 (in Chinese) [张存洲, 张光寅, 俞平 1992 物理学报 41 1087]

    [32]

    Tang Q W, Shen G R, Fang L 2006 Acta Phys. Sin. 55 1346 (in Chinese) [唐秋文, 沈明荣, 方亮 2006 物理学报 55 1346]

    [33]

    Yu H F, Zhang L S, Wu X H, Guo Y Q 2011 Acta Phys. Sin. 60 107306 (in Chinese) [于洪飞, 张鲁山, 吴小会, 郭永权 2011 物理学报 60 107306]

    [34]

    Zhou C C, Liu F M, Ding P, Cai L G, Zhong W W, Zhang H 2010 Chin. Phys. B 19 067503

    [35]

    Ai S T 2005 Chin. Phys. 14 1246

    [36]

    Zhou X Y, Ge S H, Han X F, Zuo Y L, Xiao Y H, Wen Z C, Zhang L, Li M J 2009 Chin. Phys. B 18 4025

    [37]

    Zou J D, Li W, Shen B G 2009 Chin. Phys. B 18 4366

    [38]

    Huang Y N, Wang C J, Riande E 2005 J. Chem. Phys. 122 144502

    [39]

    Huang Y N, Zhang J L, Ying X N 2006 Prog. Phys. 26 359 (in Chinese) [黄以能, 张晋鲁, 应学农 2006 物理学进展 26 359]

    [40]

    Huang Y N 2006 J. Yili Normal Univ. 3 39 (in Chinese) [黄以能 2006 伊犁师范学院学报 3 39]

    [41]

    Zhang J L, Wang L N, Zhou H W, Zhang L L, Zhao X Y, Huang Y N 2010 Chin. Phys. B 19 056403

    [42]

    Zhang J L, Wang L N, Zhao X Y, Zhang L L, Zhou H W, Wei L, Huang Y N 2010 Chin. Phys. B 20 026401

    [43]

    Zhao X Y, Wang L N, Fan X H, Zhang L L, Wei L, Zhang J L, Huang Y N 2011 Acta Phys. Sin. 60 036403 (in Chinese) [赵兴宇, 王丽娜, 樊小辉, 张丽丽, 卫来, 张晋鲁, 黄以能 2011 物理学报 60 036403]

    [44]

    Wang Q, Zhang X W, Gu B L 1989 Acta Phys. Sin. 38 1748 (in Chinese) [王强, 张孝文, 顾秉林 1989 物理学报 38 1748]

    [45]

    Song X P, Zhang Y G, Luo X Q, Xu L F, Chao W X, Yang C P 2009 Acta Phys. Sin. 58 4980 (in Chinese) [宋学平, 张永光, 罗晓婧, 徐玲芳, 曹万强, 杨昌平 2009 物理学报 58 4980]

    [46]

    Zhu C, Liu J M 2010 Chin. Phys. B 19 097702

    [47]

    Yue Z X, Wang X L, Zhang L Y, Yao X 1997 Chin. Phys. B 6 913

  • [1]

    Weiss P 1907 J. de Phys. 6 661

    [2]

    Weiss P 1908 Physikalische Zeitschrift 9 358

    [3]

    Gans R 1920 Ann. de Phys. 63 382

    [4]

    Gans R 1922 Ann. de Phys. 66 396

    [5]

    Heisenberg W 1928 Z. Phys. A: Hadrons Nucl. 9 619

    [6]

    McKeehan L W 1930 Nature 126 952

    [7]

    Neel L 1932 Ann. de Phys. 17 5

    [8]

    Selwood P W 1933 J. Am. Chem. Soc. 55 3161

    [9]

    Neel L 1936 Ann. de Phys. 17 232

    [10]

    Bitter F 1938 Phys. Rev. 54 79

    [11]

    Neel L 1947 C. R. Acad. Sc. 224 1488

    [12]

    Neel L 1948 Ann. de Phys. 3 137

    [13]

    Anderson P W 1950 Phys. Rev. 79 705

    [14]

    Smart J S 1953 Rev. Modern Phys. 25 327

    [15]

    Rado G T, Folen V J 1960 J. Appl. Phys. 31 62

    [16]

    Haar D T, Lines M E 1962 Philosophical Transactions of the Royal Society of London Series A: Mathematical and Physical Sciences 254 521

    [17]

    Tsang T 1964 J. Chem. Phys. 40 729

    [18]

    Gianino P D, Grossbar N 1967 J. Appl. Phys. 38 129

    [19]

    Dionne G F 1970 J. Appl. Phys. 41 4874

    [20]

    Kaneyoshi T 1973 J. Phys. C: Solid State Phys. 6 3130

    [21]

    Southern B 1975 J. Phys. C: Solid State Phys. 8 L213

    [22]

    Idogaki T, Kimura I 1976 J. Phys. Soc. Jpn. 40 968

    [23]

    Ghatak S K, Moorjani K 1976 J. Phys. C: Solid State Phys. 9 L293

    [24]

    Dai D S, Qian K M 1987 Ferromagnetics (Vol. 1) (Beijing: Science Press) p102 (in Chinese) [戴道生, 钱昆明 1987 铁磁学(上册) (北京:科学出版社) 第102页]

    [25]

    Mitsui T, Tatsuzaki I, Nakamura E (Translated by Ni G J, Wang Y L, Lin S W, Yin Q R) 1983 An Introduction to the Physics of Ferroelectrics (Beijing: Science Press) p208 (in Chinese) [三井利夫, 达崎达, 中村英二著 (倪冠军, 王勇令, 林盛卫, 殷庆瑞译) 1983 铁电物理学导论(北京:科学出版社) 第208页]

    [26]

    Lu J M, Yu T Y, Yang Y L 1993 Science in China A 36 624

    [27]

    Fähnle M 2000 J. Magn. Magn. Mater. 210 L1

    [28]

    Ai S T, Zhong W L, Wang C L, Wang J F, Zhang P L 2000 Acta Phys. Sin. 51 1739 (in Chinese) [艾树涛, 钟维烈, 王春雷, 王矜奉, 张沛霖 2000 物理学报 51 1739]

    [29]

    Shen B G, Zhao J G, Zhan W S, Chen J C 1986 Acta Phys. Sin. 35 124 (in Chinese) [沈保根, 赵见高, 詹文山, 陈金昌 1986 物理学报 35 124]

    [30]

    Liu P Q 1987 Acta Phys. Sin. 36 540 (in Chinese) [刘品清 1987 物理学报 36 540]

    [31]

    Zhang C Z, Zhang G Y, Yu P 1992 Acta Phys. Sin. 41 1087 (in Chinese) [张存洲, 张光寅, 俞平 1992 物理学报 41 1087]

    [32]

    Tang Q W, Shen G R, Fang L 2006 Acta Phys. Sin. 55 1346 (in Chinese) [唐秋文, 沈明荣, 方亮 2006 物理学报 55 1346]

    [33]

    Yu H F, Zhang L S, Wu X H, Guo Y Q 2011 Acta Phys. Sin. 60 107306 (in Chinese) [于洪飞, 张鲁山, 吴小会, 郭永权 2011 物理学报 60 107306]

    [34]

    Zhou C C, Liu F M, Ding P, Cai L G, Zhong W W, Zhang H 2010 Chin. Phys. B 19 067503

    [35]

    Ai S T 2005 Chin. Phys. 14 1246

    [36]

    Zhou X Y, Ge S H, Han X F, Zuo Y L, Xiao Y H, Wen Z C, Zhang L, Li M J 2009 Chin. Phys. B 18 4025

    [37]

    Zou J D, Li W, Shen B G 2009 Chin. Phys. B 18 4366

    [38]

    Huang Y N, Wang C J, Riande E 2005 J. Chem. Phys. 122 144502

    [39]

    Huang Y N, Zhang J L, Ying X N 2006 Prog. Phys. 26 359 (in Chinese) [黄以能, 张晋鲁, 应学农 2006 物理学进展 26 359]

    [40]

    Huang Y N 2006 J. Yili Normal Univ. 3 39 (in Chinese) [黄以能 2006 伊犁师范学院学报 3 39]

    [41]

    Zhang J L, Wang L N, Zhou H W, Zhang L L, Zhao X Y, Huang Y N 2010 Chin. Phys. B 19 056403

    [42]

    Zhang J L, Wang L N, Zhao X Y, Zhang L L, Zhou H W, Wei L, Huang Y N 2010 Chin. Phys. B 20 026401

    [43]

    Zhao X Y, Wang L N, Fan X H, Zhang L L, Wei L, Zhang J L, Huang Y N 2011 Acta Phys. Sin. 60 036403 (in Chinese) [赵兴宇, 王丽娜, 樊小辉, 张丽丽, 卫来, 张晋鲁, 黄以能 2011 物理学报 60 036403]

    [44]

    Wang Q, Zhang X W, Gu B L 1989 Acta Phys. Sin. 38 1748 (in Chinese) [王强, 张孝文, 顾秉林 1989 物理学报 38 1748]

    [45]

    Song X P, Zhang Y G, Luo X Q, Xu L F, Chao W X, Yang C P 2009 Acta Phys. Sin. 58 4980 (in Chinese) [宋学平, 张永光, 罗晓婧, 徐玲芳, 曹万强, 杨昌平 2009 物理学报 58 4980]

    [46]

    Zhu C, Liu J M 2010 Chin. Phys. B 19 097702

    [47]

    Yue Z X, Wang X L, Zhang L Y, Yao X 1997 Chin. Phys. B 6 913

  • [1] 田春玲, 刘海燕, 王彪, 刘福生, 甘云丹. 稠密流体氮高温高压相变及物态方程. 物理学报, 2022, 71(15): 158701. doi: 10.7498/aps.71.20220124
    [2] 赵中华, 渠广昊, 姚佳池, 闵道敏, 翟鹏飞, 刘杰, 李盛涛. 热峰作用下单斜ZrO2相变过程的分子动力学模拟. 物理学报, 2021, 70(13): 136101. doi: 10.7498/aps.70.20201861
    [3] 黄建邦, 南虎, 张锋, 张佳乐, 刘来君, 王大威. 弛豫铁电体弥散相变与热滞效应的伊辛模型. 物理学报, 2021, 70(11): 110501. doi: 10.7498/aps.70.20202019
    [4] 李俊, 吴强, 于继东, 谭叶, 姚松林, 薛桃, 金柯. 铁冲击相变的晶向效应. 物理学报, 2017, 66(14): 146201. doi: 10.7498/aps.66.146201
    [5] 员江娟, 陈铮, 李尚洁, 张静. 晶体相场法研究预变形对熔点附近六角相/正方相相变的影响. 物理学报, 2014, 63(16): 166401. doi: 10.7498/aps.63.166401
    [6] 王军国, 刘福生, 李永宏, 张明建, 张宁超, 薛学东. 在石英界面处液态水的冲击结构相变. 物理学报, 2012, 61(19): 196201. doi: 10.7498/aps.61.196201
    [7] 刘丹阳, 王亚伟, 王仙, 何昆, 张兴娟, 杨春信. 氧相变换热器内压力波动的混沌特性分析. 物理学报, 2012, 61(15): 150506. doi: 10.7498/aps.61.150506
    [8] 周婷婷, 黄风雷. HMX不同晶型热膨胀特性及相变的ReaxFF分子动力学模拟. 物理学报, 2012, 61(24): 246501. doi: 10.7498/aps.61.246501
    [9] 张丽丽, 黄心茹, 周恒为, 黄以能. 基于Weiss分子场理论对极性液体中静态介电常数随温度变化及其相应取向关联的研究. 物理学报, 2012, 61(18): 187701. doi: 10.7498/aps.61.187701
    [10] 汪志刚, 吴亮, 张杨, 文玉华. 面心立方铁纳米粒子的相变与并合行为的分子动力学研究. 物理学报, 2011, 60(9): 096105. doi: 10.7498/aps.60.096105
    [11] 季正华, 曾祥华, 岑洁萍, 谭明秋. ZnSe相变、电子结构的第一性原理计算. 物理学报, 2010, 59(2): 1219-1224. doi: 10.7498/aps.59.1219
    [12] 吕业刚, 梁晓琳, 龚跃球, 郑学军, 刘志壮. 外加电场对铁电薄膜相变的影响. 物理学报, 2010, 59(11): 8167-8171. doi: 10.7498/aps.59.8167
    [13] 宋婷婷, 何捷, 林理彬, 陈军. 氧化钒晶体的半导体至金属相变的理论研究. 物理学报, 2010, 59(9): 6480-6486. doi: 10.7498/aps.59.6480
    [14] 邵建立, 秦承森, 王裴. 动态压缩下马氏体相变力学性质的微观研究. 物理学报, 2009, 58(3): 1936-1941. doi: 10.7498/aps.58.1936
    [15] 陈斌, 彭向和, 范镜泓, 孙士涛, 罗吉. 考虑相变的热弹塑性本构方程及其应用. 物理学报, 2009, 58(13): 29-S34. doi: 10.7498/aps.58.29
    [16] 王 晖, 刘金芳, 何 燕, 陈 伟, 王 莺, L. Gerward, 蒋建中. 高压下纳米锗的状态方程与相变. 物理学报, 2007, 56(11): 6521-6525. doi: 10.7498/aps.56.6521
    [17] 邵建立, 王 裴, 秦承森, 周洪强. 铁冲击相变的分子动力学研究. 物理学报, 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
    [18] 周 静, 赵 然, 陈 文. xPMnS-(1-x)PZN陶瓷的相变特性研究. 物理学报, 2006, 55(6): 2815-2819. doi: 10.7498/aps.55.2815
    [19] 刘 红, 王 慧. 双轴性向列相液晶的相变理论. 物理学报, 2005, 54(3): 1306-1312. doi: 10.7498/aps.54.1306
    [20] 艾树涛, 钟维烈, 王春雷, 王矜奉, 张沛霖. 铁电分子场与Onsager关系. 物理学报, 2002, 51(8): 1739-1742. doi: 10.7498/aps.51.1739
计量
  • 文章访问数:  6077
  • PDF下载量:  502
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-10-30
  • 修回日期:  2011-12-22
  • 刊出日期:  2012-07-05

/

返回文章
返回