搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维拓扑绝缘体antidot阵列结构中的磁致输运研究

敬玉梅 黄少云 吴金雄 彭海琳 徐洪起

引用本文:
Citation:

三维拓扑绝缘体antidot阵列结构中的磁致输运研究

敬玉梅, 黄少云, 吴金雄, 彭海琳, 徐洪起

Magnetotransport in antidot arrays of three-dimensional topological insulators

Jing Yu-Mei, Huang Shao-Yun, Wu Jin-Xiong, Peng Hai-Lin, Xu Hong-Qi
PDF
导出引用
  • 利用聚焦离子束刻蚀技术在拓扑绝缘体Bi2Se3薄膜中刻蚀了纳米尺度的反点(antidot)阵列,并对制作的三个器件进行了系统的电学输运测量研究.低温下,所有器件中都观察到明显的弱反局域化效应.通过对弱反局域化效应的分析,发现器件一(Dev-1,不含有antidot阵列)和器件二(Dev-2,含有周期较大的antidot阵列)是始终由一个导电通道主导的量子输运系统,但在器件三(Dev-3,含有周期较小的antidot阵列)中能明确观察到较低温度下存在两个独立的导电通道,而在较高温度下Dev-3表现为由一个导电通道主导的量子输运系统.
    Three-dimensional topological insulators are a new kind of quantum matter featured with gapless Dirac-like energy-dispersive surface states in the insulating bulk band gaps. However, in experiment, it is difficult to study quantum interference effect of surface states due to considerable contribution from bulk carriers in thick bulk material. To suppress such a bulk state contribution, nanostructures, such as ultra-thin films, nanowires and nanoribbons, have been employed in the study of quantum interference effects of the surface states. Here, we report on a magnetotransport measurement study of nanoscaled antidot array devices made from three-dimensional topological insulator Bi2Se3 thin films. The antidot arrays with hundreds of nanometers in diameter and edge-to-edge distance are fabricated in the thin films by utilizing the focused-ion beam technique, and the magnetotransport properties of the fabricated devices are measured at low temperatures. The results of the magnetotransport measurements for three representative devices, denoted as Dev-1 (with no antidot array fabricated), Dev-2 (with an antidot array of a relatively large period), and Dev-3 (with an antidot array of a relatively small period), are reported in this work. Weak anti-localization indicated by a sharp peak of conductivity at zero magnetic field is observed in all the three devices. Through theoretical fitting to the measurement data, the transport parameters in the three devices, such as spin-orbit coupling length Lso, phase coherence length L, and the number of conduction channels , are extracted. The extracted Lso value is tens of nanometers, which is consistent with the presence of the strong spin-orbit interaction in the Bi2Se3 thin film. The extracted L value is hundreds of nanometers and increases exponentially with temperature decreasing. It is found that the magnetotransports in Dev-1 and Dev-2 are well characterized by the coherent transport through a single conduction channel. For Dev-3, the magnetotransport at low temperatures is described by the coherent transport through two independent conduction channels, while at elevated temperatures the magnetotransport is dominantly described by the transport through one single conduction channel. Unlike the case where the transport occurs dominantly through a single conduction channel, the transport through two independent conduction channels in Dev-3 implies that at least one surface channel is present in the device.
      通信作者: 黄少云, syhuang@pku.edu.cn;hqxu@pku.edu.cn ; 徐洪起, syhuang@pku.edu.cn;hqxu@pku.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号:2016YFA0300601,2016YFA0300802,2017YFA0303304,2017YFA0204901)和国家自然科学基金(批准号:91221202,91421303,11274021)资助的课题.
      Corresponding author: Huang Shao-Yun, syhuang@pku.edu.cn;hqxu@pku.edu.cn ; Xu Hong-Qi, syhuang@pku.edu.cn;hqxu@pku.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2016YFA0300601, 2016YFA0300802, 2017YFA0303304, 2017YFA0204901) and the National Natural Science Foundation of China (Grant Nos. 91221202, 91421303, 11274021).
    [1]

    Moore J E 2010 Nature 464 194

    [2]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045

    [3]

    Fu L, Kane C L 2008 Phys. Rev. Lett. 100 096407

    [4]

    Qi X L, Li R, Zang J, Zhang S C 2009 Science 323 1184

    [5]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057

    [6]

    Berry M V 1984 Proc. R. Soc. London Ser. A 392 45

    [7]

    Taskin A A, Sasaki S, Segawa K, Ando Y 2012 Phys. Rev. Lett. 109 066803

    [8]

    Tian M, Ning W, Qu Z, Du H, Wang J, Zhang Y 2013 Sci. Rep. 3 1212

    [9]

    Hong S S, Zhang Y, Cha J J, Qi X L, Cui Y 2014 Nano Lett. 14 2815

    [10]

    Jauregui L A, Pettes M T, Rokhinson L P, Shi L, Chen Y P 2015 Sci. Rep. 5 8452

    [11]

    Jing Y, Huang S, Zhang K, Wu J, Guo Y, Peng H, Liu Z, Xu H Q 2016 Nanoscale 8 1879

    [12]

    Weiss D 1991 Adv. Solid State Phys. 31 341

    [13]

    Weiss D, Richter K, Menschig A, Bergmann R, Schweizer H, von Klitzing K, Weimann G 1993 Phys. Rev. Lett. 70 4118

    [14]

    Peng H L, Dang W H, Cao J, Chen Y L, Wu W, Zheng W S, Li H, Shen Z X, Liu Z F 2012 Nat. Chem. 4 281

    [15]

    Rabin O, Nielsch K, Dresselhaus M S 2006 Appl. Phys. A 82 471

    [16]

    Ghaemi P, Mong R S K, Moore J E 2010 Phys. Rev. Lett. 105 166603

    [17]

    Tkachov G, Hankiewicz E M 2011 Phys. Rev. B 84 035444

    [18]

    Hikami S, Larkin A, Nagaoka Y 1980 Prog. Theor. Phys. 63 707

    [19]

    Altshuler B L, Aronov A G, Khmelnitsky D E 1982 J. Phys. C 15 7367

    [20]

    Checkelsky J G, Hor Y S, Liu M H, Qu D X, Cava R J, Ong N P 2009 Phys. Rev. Lett. 103 246601

    [21]

    Kim Y S, Brahlek M, Bansal N, Edrey E, Kapilevich G A, Iida K, Tanimura M, Horibe Y, Cheong S W, Oh S 2011 Phys. Rev. B 84 073109

    [22]

    Lang M, He L, Xiu F, Yu X, Tang J, Wang Y, Kou X, Jiang W, Fedorov A V, Wang K L 2012 ACS Nano 6 295

    [23]

    Takagaki Y, Jenichen B, Jahn U, Ramsteiner M, Friedland K J 2012 Phys. Rev. B 85 115314

    [24]

    Chiu S P, Lin J J 2013 Phys. Rev. B 87 035122

  • [1]

    Moore J E 2010 Nature 464 194

    [2]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045

    [3]

    Fu L, Kane C L 2008 Phys. Rev. Lett. 100 096407

    [4]

    Qi X L, Li R, Zang J, Zhang S C 2009 Science 323 1184

    [5]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057

    [6]

    Berry M V 1984 Proc. R. Soc. London Ser. A 392 45

    [7]

    Taskin A A, Sasaki S, Segawa K, Ando Y 2012 Phys. Rev. Lett. 109 066803

    [8]

    Tian M, Ning W, Qu Z, Du H, Wang J, Zhang Y 2013 Sci. Rep. 3 1212

    [9]

    Hong S S, Zhang Y, Cha J J, Qi X L, Cui Y 2014 Nano Lett. 14 2815

    [10]

    Jauregui L A, Pettes M T, Rokhinson L P, Shi L, Chen Y P 2015 Sci. Rep. 5 8452

    [11]

    Jing Y, Huang S, Zhang K, Wu J, Guo Y, Peng H, Liu Z, Xu H Q 2016 Nanoscale 8 1879

    [12]

    Weiss D 1991 Adv. Solid State Phys. 31 341

    [13]

    Weiss D, Richter K, Menschig A, Bergmann R, Schweizer H, von Klitzing K, Weimann G 1993 Phys. Rev. Lett. 70 4118

    [14]

    Peng H L, Dang W H, Cao J, Chen Y L, Wu W, Zheng W S, Li H, Shen Z X, Liu Z F 2012 Nat. Chem. 4 281

    [15]

    Rabin O, Nielsch K, Dresselhaus M S 2006 Appl. Phys. A 82 471

    [16]

    Ghaemi P, Mong R S K, Moore J E 2010 Phys. Rev. Lett. 105 166603

    [17]

    Tkachov G, Hankiewicz E M 2011 Phys. Rev. B 84 035444

    [18]

    Hikami S, Larkin A, Nagaoka Y 1980 Prog. Theor. Phys. 63 707

    [19]

    Altshuler B L, Aronov A G, Khmelnitsky D E 1982 J. Phys. C 15 7367

    [20]

    Checkelsky J G, Hor Y S, Liu M H, Qu D X, Cava R J, Ong N P 2009 Phys. Rev. Lett. 103 246601

    [21]

    Kim Y S, Brahlek M, Bansal N, Edrey E, Kapilevich G A, Iida K, Tanimura M, Horibe Y, Cheong S W, Oh S 2011 Phys. Rev. B 84 073109

    [22]

    Lang M, He L, Xiu F, Yu X, Tang J, Wang Y, Kou X, Jiang W, Fedorov A V, Wang K L 2012 ACS Nano 6 295

    [23]

    Takagaki Y, Jenichen B, Jahn U, Ramsteiner M, Friedland K J 2012 Phys. Rev. B 85 115314

    [24]

    Chiu S P, Lin J J 2013 Phys. Rev. B 87 035122

  • [1] 张帅, 宋凤麒. 拓扑绝缘体中量子霍尔效应的研究进展. 物理学报, 2023, 72(17): 177302. doi: 10.7498/aps.72.20230698
    [2] 刘畅, 王亚愚. 磁性拓扑绝缘体中的量子输运现象. 物理学报, 2023, 72(17): 177301. doi: 10.7498/aps.72.20230690
    [3] 许佳玲, 贾利云, 刘超, 吴佺, 赵领军, 马丽, 侯登录. Li(Na)AuS体系拓扑绝缘体材料的能带结构. 物理学报, 2021, 70(2): 027101. doi: 10.7498/aps.70.20200885
    [4] 王航天, 赵海慧, 温良恭, 吴晓君, 聂天晓, 赵巍胜. 高性能太赫兹发射: 从拓扑绝缘体到拓扑自旋电子. 物理学报, 2020, 69(20): 200704. doi: 10.7498/aps.69.20200680
    [5] 向天, 程亮, 齐静波. 拓扑绝缘体中的超快电荷自旋动力学. 物理学报, 2019, 68(22): 227202. doi: 10.7498/aps.68.20191433
    [6] 贾鼎, 葛勇, 袁寿其, 孙宏祥. 基于蜂窝晶格声子晶体的双频带声拓扑绝缘体. 物理学报, 2019, 68(22): 224301. doi: 10.7498/aps.68.20190951
    [7] 刘畅, 刘祥瑞. 强三维拓扑绝缘体与磁性拓扑绝缘体的角分辨光电子能谱学研究进展. 物理学报, 2019, 68(22): 227901. doi: 10.7498/aps.68.20191450
    [8] 许楠, 张岩. 三聚化非厄密晶格中具有趋肤效应的拓扑边缘态. 物理学报, 2019, 68(10): 104206. doi: 10.7498/aps.68.20190112
    [9] 高艺璇, 张礼智, 张余洋, 杜世萱. 二维有机拓扑绝缘体的研究进展. 物理学报, 2018, 67(23): 238101. doi: 10.7498/aps.67.20181711
    [10] 关童, 滕静, 吴克辉, 李永庆. 拓扑绝缘体(Bi0.5Sb0.5)2Te3薄膜中的线性磁阻. 物理学报, 2015, 64(7): 077201. doi: 10.7498/aps.64.077201
    [11] 李兆国, 张帅, 宋凤麒. 拓扑绝缘体的普适电导涨落. 物理学报, 2015, 64(9): 097202. doi: 10.7498/aps.64.097202
    [12] 王青, 盛利. 磁场中的拓扑绝缘体边缘态性质. 物理学报, 2015, 64(9): 097302. doi: 10.7498/aps.64.097302
    [13] 韦庞, 李康, 冯硝, 欧云波, 张立果, 王立莉, 何珂, 马旭村, 薛其坤. 在预刻蚀的衬底上通过分子束外延直接生长出拓扑绝缘体薄膜的微器件. 物理学报, 2014, 63(2): 027303. doi: 10.7498/aps.63.027303
    [14] 陈艳丽, 彭向阳, 杨红, 常胜利, 张凯旺, 钟建新. 拓扑绝缘体Bi2Se3中层堆垛效应的第一性原理研究. 物理学报, 2014, 63(18): 187303. doi: 10.7498/aps.63.187303
    [15] 李平原, 陈永亮, 周大进, 陈鹏, 张勇, 邓水全, 崔雅静, 赵勇. 拓扑绝缘体Bi2Te3的热膨胀系数研究. 物理学报, 2014, 63(11): 117301. doi: 10.7498/aps.63.117301
    [16] 王啸天, 代学芳, 贾红英, 王立英, 刘然, 李勇, 刘笑闯, 张小明, 王文洪, 吴光恒, 刘国栋. Heusler型X2RuPb (X=Lu, Y)合金的反带结构和拓扑绝缘性. 物理学报, 2014, 63(2): 023101. doi: 10.7498/aps.63.023101
    [17] 王怀强, 杨运友, 鞠艳, 盛利, 邢定钰. 铁磁绝缘体间的极薄Bi2Se3薄膜的相变研究. 物理学报, 2013, 62(3): 037202. doi: 10.7498/aps.62.037202
    [18] 张小明, 刘国栋, 杜音, 刘恩克, 王文洪, 吴光恒, 柳忠元. 半Heusler型拓扑绝缘体LaPtBi能带调控的研究. 物理学报, 2012, 61(12): 123101. doi: 10.7498/aps.61.123101
    [19] 曾伦武, 宋润霞. 点电荷在拓扑绝缘体和导体中感应磁单极. 物理学报, 2012, 61(11): 117302. doi: 10.7498/aps.61.117302
    [20] 曾伦武, 张浩, 唐中良, 宋润霞. 拓扑绝缘体椭球粒子的电磁散射. 物理学报, 2012, 61(17): 177303. doi: 10.7498/aps.61.177303
计量
  • 文章访问数:  5877
  • PDF下载量:  268
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-30
  • 修回日期:  2017-12-06
  • 刊出日期:  2019-02-20

/

返回文章
返回