搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于化学气相沉积方法的石墨烯-光子晶体光纤的制备研究

王晓愚 毕卫红 崔永兆 付广伟 付兴虎 金娃 王颖

引用本文:
Citation:

基于化学气相沉积方法的石墨烯-光子晶体光纤的制备研究

王晓愚, 毕卫红, 崔永兆, 付广伟, 付兴虎, 金娃, 王颖

Synthesis of photonic crystal fiber based on graphene directly grown on air-hole by chemical vapor deposition

Wang Xiao-Yu, Bi Wei-Hong, Cui Yong-Zhao, Fu Guang-Wei, Fu Xing-Hu, Jin Wa, Wang Ying
PDF
HTML
导出引用
  • 本文利用常压化学气相沉积方法, 在光子晶体光纤内孔壁上直接生长石墨烯薄膜, 实现了石墨烯-光纤复合材料的直接制备. 研究发现光纤中石墨烯层数和缺陷主要受生长温度、生长时间以及甲烷流量等参数影响. 拉曼光谱和扫描电子显微镜等表征结果表明: 石墨烯在光子晶体光纤孔内的生长均匀性良好, 适当的高温、较长的生长时间以及合适的甲烷流量有利于生长高质量的石墨烯. 石墨烯-光子晶体光纤复合材料的制备, 对基于光纤平台的石墨烯光电器件的研究、开发和应用有着重要的推动作用, 也为石墨烯全光纤集成应用提供了新的思路.
    The integration of fiber with graphene has greatly expanded the two-dimensional functional materials in the field of photonics research. However, the growth method by using chemical vapor deposition with metal catalytic substrateis limited to the fabrication of a graphene-fiber composite due to inevitably transferring graphene flakes onto the optical fiber surface. In order to fully achieve the interaction between light and graphene material, optical fibers have to be treated with special structure, which greatly damages the fiber structure, resulting in inefficient and harmful manufacturing strategy for the mass production. In this paper, a graphene-photonic crystal fiber (G-PCF) composite is prepared by atmospheric chemical vapor deposition (APCVD), which can directly grow monolayer and multi-layer graphene into the air-hole of photonic crystal fiber. Furthermore, we randomly break a G-PCF and then conduct an electron microscope (SEM) test at the fractured section. It is obvious that a tube-like graphene protruding out of one hole in the fractured area of the G-PCF is observed, thus further demonstrating that a monolayer graphene is grown on the inner hole walls of the PCF as shown in Fig. 2. By changing the process parameters such as growth temperature, duration and gas flow rate of carbon source, the law of the influence of different parameters on the graphene layers is explored. In addition, the uniformity of graphene and defects in the graphene-photonic crystal fiber(G-PCF) are experimentally analyzed. As illustrated in Fig. 7, a 4-cm-long uniform graphene-photonic crystal fiber sample is achieved by controlling the gas flow rate, growth time and the growth temperature. The APCVD method of directly growing graphene onto the inner hole walls of the PCF is simple and effective. The flexible structure and optical control enable the G-PCF to have great potential applications in all-optical devices and photonics. The development of high-quality graphene synthesis and opto-electronics technology ensures its compatibility with the integrated electronics platform and existing optical fiber systems. Moreover, our results will pave the way for 2D materials and optical fiber applications, providing a new idea for the application of graphene to the integration of all-optical fibers.
      通信作者: 毕卫红, whbi@ysu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2019YFC1407900, 2017YFC1403800)、国家自然科学基金重点项目(批准号: 61735011)和河北省重点研发计划项目(批准号: 18273302D)资助的课题
      Corresponding author: Bi Wei-Hong, whbi@ysu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant Nos. 2019YFC1407900, 2017YFC1403800), the Key Program of the National Natural Science Foundation of China (Grant No. 61735011), and the Key Research and Development Planning Project of Hebei Province, China (Grant No. 18273302D)
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen H X, Zhang Y B 2014 Nat. Nanotechnol. 9 372Google Scholar

    [3]

    Zhao W, Ghorannevis Z, Chu L, Toh M, Kloc C, Tan P H, Eda G 2012 ACS Nano 7 791

    [4]

    Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nat. Nanotechnol. 5 722Google Scholar

    [5]

    Liu C H, Chang Y C, Norris T B, Zhong Z H 2014 Nat. Nanotechnol. 9 273Google Scholar

    [6]

    Xin W, Liu Z B, Sheng Q W, Feng M, Huang L G, Wang P, Jiang W S, Xing F, Liu Y G, Tian J G 2014 Opt. Express 22 10239Google Scholar

    [7]

    Li W, Chen B G, Meng C, Fang W, Xiao Y, Li X Y, Hu Z F, Xu Y X, Tong L M, Wang H Q, Liu W T, Bao J M, Shen R 2014 Nano Lett. 14 955Google Scholar

    [8]

    Martinez A, Fuse K, Yamashita S J 2011 Appl. Phys. Lett. 99 121107Google Scholar

    [9]

    Williams G M, Seger B, Kamat P 2008 ACS Nano 2 1487Google Scholar

    [10]

    Sutter P W, Flege J I, Sutter E A 2008 Nat. Mater. 7 406Google Scholar

    [11]

    Sun J Y, Zhang Y F, Liu Z F 2016 ChemNanoMat 2 212Google Scholar

    [12]

    Guo W, Jing F, Xiao J, Zhou C, Lin Y W, Wang S 2016 Adv. Mater. 28 3152Google Scholar

    [13]

    Xu X Z, Zhang Z H, Qiu L, Zhuang J N, Zhang L, Wang H, Liao C N, Song H D, Qiao R X, Gao P, Hu Z H, Liao L, Liao Z M, Yu D P, Wang E G, Ding F, Peng H L, Liu K H 2016 Nat. Nanotechnol. 11 930Google Scholar

    [14]

    Zhou F, Jin X F, Hao R, Zhang X M, Chi H, Zheng S L 2016 J. Opt. 45 337Google Scholar

    [15]

    Chen J H, Liang Z H, Yuan L R, Li C, Chen M R, Xia Y D, Zhang X J, Xu F, Lu Y Q 2017 Nanoscale 9 3424Google Scholar

    [16]

    Yang X C, Lu Y, Liu B L, Yao J Q 2016 Plasmonics 12 489

    [17]

    Chen K, Zhou X, Cheng X, Qiao R X, Cheng Y, Liu C, Xie Y D, Yu W T, Yao F R, Sun Z P, Wang F, Liu K H, Liu Z F 2019 Nat. Photonics 13 754Google Scholar

    [18]

    张秋慧, 韩敬华, 冯国英, 徐其兴, 丁立中, 卢晓翔 2012 物理学报 61 234302Google Scholar

    Zhang Q H, Hang J H, Feng G Y, Xu Q X, Ding L Z, Lu X X 2012 Acta Phys. Sin. 61 234302Google Scholar

    [19]

    吴娟霞, 徐华, 张锦 2014 化学学报 72 301Google Scholar

    Wu J X, Xu H, Zhang J 2014 Acta Chim. Sin. 72 301Google Scholar

    [20]

    Malard L M, Pimenta M A, Dresselhaus G, Dresselhaus M S 2009 Phys. Rep. 473 51Google Scholar

    [21]

    Lazzeri M, Attaccalite C, Wirtz L, Mauri F 2008 Phys. Rev. B 78 081406Google Scholar

  • 图 1  石墨烯生长系统示意图

    Fig. 1.  Schematic diagram of graphene growth system.

    图 2  (a) 用于生长石墨烯的光子晶体光纤端面SEM图; (b) G-PCF破损端面空气孔处突出的管状石墨烯

    Fig. 2.  (a) SEM image of the G-PCF end surface; (b) SEM image of a tube-like graphene protruding out of air-holes of the fractured G-PCF.

    图 3  (a) G-PCF拉曼显微镜成像图; (b) G-PCF拉曼光谱图

    Fig. 3.  (a) Raman image of the G-PCF; (b) Raman spectrum of the G-PCF.

    图 4  不同温度下生长的G-PCF拉曼光谱特征参数变化图 (a) G峰半高宽随温度的变化; (b) 2D峰半高宽随温度的变化; (c) I2D/IG随温度的变化; (d) ID/IG随温度的变化

    Fig. 4.  Variation diagrams of Raman spectral characteristic parameters of G-PCF grown at different temperatures: (a) FWHMG; (b) FWHM2D; (c) I2D/IG; (d) ID/IG.

    图 5  不同生长时间下生长的G-PCF拉曼光谱特征参数变化图 (a) G峰半高宽随生长时间的变化; (b) 2D峰半高宽随生长时间的变化; (c) I2D/IG随生长时间的变化; (d) ID/IG随生长时间的变化

    Fig. 5.  Variation diagrams of Raman spectral characteristic parameters of G-PCF under different growth time: (a) FWHMG; (b) FWHM2D; (c) I2D/IG; (d) ID/IG

    图 6  甲烷流量与G-PCF拉曼光谱的特征参数关系图 (a) G峰半高宽随气体流速的变化; (b) 2D峰半高宽随气体流速的变化; (c) I2 D/IG随气体流速的变化; (d) ID/IG随气体流速的变化

    Fig. 6.  Variation diagrams of Raman spectral characteristics parameters of G-PCF by different volume flowrate of Methane: (a) FWHMG; (b) FWHM2D; (c) I2D/IG; (d) ID/IG

    图 7  (a) G-PCF拉曼测试位置示意图; 在9个测试位置上的拉曼光谱特征参数 (b) G峰半高宽, (c) 2D峰半高宽, (d) ID/IG

    Fig. 7.  (a) Schematic diagram of Raman test positions of G-PCF; (b) The results of FWHMG, (c) FWHM2D, (d) ID/IG at 9 different test positions

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen H X, Zhang Y B 2014 Nat. Nanotechnol. 9 372Google Scholar

    [3]

    Zhao W, Ghorannevis Z, Chu L, Toh M, Kloc C, Tan P H, Eda G 2012 ACS Nano 7 791

    [4]

    Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nat. Nanotechnol. 5 722Google Scholar

    [5]

    Liu C H, Chang Y C, Norris T B, Zhong Z H 2014 Nat. Nanotechnol. 9 273Google Scholar

    [6]

    Xin W, Liu Z B, Sheng Q W, Feng M, Huang L G, Wang P, Jiang W S, Xing F, Liu Y G, Tian J G 2014 Opt. Express 22 10239Google Scholar

    [7]

    Li W, Chen B G, Meng C, Fang W, Xiao Y, Li X Y, Hu Z F, Xu Y X, Tong L M, Wang H Q, Liu W T, Bao J M, Shen R 2014 Nano Lett. 14 955Google Scholar

    [8]

    Martinez A, Fuse K, Yamashita S J 2011 Appl. Phys. Lett. 99 121107Google Scholar

    [9]

    Williams G M, Seger B, Kamat P 2008 ACS Nano 2 1487Google Scholar

    [10]

    Sutter P W, Flege J I, Sutter E A 2008 Nat. Mater. 7 406Google Scholar

    [11]

    Sun J Y, Zhang Y F, Liu Z F 2016 ChemNanoMat 2 212Google Scholar

    [12]

    Guo W, Jing F, Xiao J, Zhou C, Lin Y W, Wang S 2016 Adv. Mater. 28 3152Google Scholar

    [13]

    Xu X Z, Zhang Z H, Qiu L, Zhuang J N, Zhang L, Wang H, Liao C N, Song H D, Qiao R X, Gao P, Hu Z H, Liao L, Liao Z M, Yu D P, Wang E G, Ding F, Peng H L, Liu K H 2016 Nat. Nanotechnol. 11 930Google Scholar

    [14]

    Zhou F, Jin X F, Hao R, Zhang X M, Chi H, Zheng S L 2016 J. Opt. 45 337Google Scholar

    [15]

    Chen J H, Liang Z H, Yuan L R, Li C, Chen M R, Xia Y D, Zhang X J, Xu F, Lu Y Q 2017 Nanoscale 9 3424Google Scholar

    [16]

    Yang X C, Lu Y, Liu B L, Yao J Q 2016 Plasmonics 12 489

    [17]

    Chen K, Zhou X, Cheng X, Qiao R X, Cheng Y, Liu C, Xie Y D, Yu W T, Yao F R, Sun Z P, Wang F, Liu K H, Liu Z F 2019 Nat. Photonics 13 754Google Scholar

    [18]

    张秋慧, 韩敬华, 冯国英, 徐其兴, 丁立中, 卢晓翔 2012 物理学报 61 234302Google Scholar

    Zhang Q H, Hang J H, Feng G Y, Xu Q X, Ding L Z, Lu X X 2012 Acta Phys. Sin. 61 234302Google Scholar

    [19]

    吴娟霞, 徐华, 张锦 2014 化学学报 72 301Google Scholar

    Wu J X, Xu H, Zhang J 2014 Acta Chim. Sin. 72 301Google Scholar

    [20]

    Malard L M, Pimenta M A, Dresselhaus G, Dresselhaus M S 2009 Phys. Rep. 473 51Google Scholar

    [21]

    Lazzeri M, Attaccalite C, Wirtz L, Mauri F 2008 Phys. Rev. B 78 081406Google Scholar

  • [1] 陈善登, 白清顺, 窦昱昊, 郭万民, 王洪飞, 杜云龙. 金刚石晶界辅助石墨烯沉积的成核机理仿真. 物理学报, 2022, 71(8): 086103. doi: 10.7498/aps.71.20211981
    [2] 徐翔, 张莹, 闫庆, 刘晶晶, 王骏, 徐新龙, 华灯鑫. 不同堆垛结构二硫化铼/石墨烯异质结的光电化学特性. 物理学报, 2021, 70(9): 098203. doi: 10.7498/aps.70.20201904
    [3] 周海涛, 熊希雅, 罗飞, 罗炳威, 刘大博, 申承民. 原位生长技术制备石墨烯强化铜基复合材料. 物理学报, 2021, 70(8): 086201. doi: 10.7498/aps.70.20201943
    [4] 白清顺, 窦昱昊, 何欣, 张爱民, 郭永博. 基于分子动力学模拟的铜晶面石墨烯沉积生长机理. 物理学报, 2020, 69(22): 226102. doi: 10.7498/aps.69.20200781
    [5] 吴晨晨, 郭相东, 胡海, 杨晓霞, 戴庆. 石墨烯等离激元增强红外光谱. 物理学报, 2019, 68(14): 148103. doi: 10.7498/aps.68.20190903
    [6] 张晓波, 青芳竹, 李雪松. 化学气相沉积石墨烯薄膜的洁净转移. 物理学报, 2019, 68(9): 096801. doi: 10.7498/aps.68.20190279
    [7] 刘乐, 汤建, 王琴琴, 时东霞, 张广宇. 石墨烯封装单层二硫化钼的热稳定性研究. 物理学报, 2018, 67(22): 226501. doi: 10.7498/aps.67.20181255
    [8] 谷季唯, 王锦程, 王志军, 李俊杰, 郭灿, 唐赛. 不同衬底条件下石墨烯结构形核过程的晶体相场法研究. 物理学报, 2017, 66(21): 216101. doi: 10.7498/aps.66.216101
    [9] 李浩, 付志兵, 王红斌, 易勇, 黄维, 张继成. 铜基底上双层至多层石墨烯常压化学气相沉积法制备与机理探讨. 物理学报, 2017, 66(5): 058101. doi: 10.7498/aps.66.058101
    [10] 杨慧慧, 高峰, 戴明金, 胡平安. 介电层表面直接生长石墨烯的研究进展. 物理学报, 2017, 66(21): 216804. doi: 10.7498/aps.66.216804
    [11] 董艳芳, 何大伟, 王永生, 许海腾, 巩哲. 一种简单的化学气相沉积法制备大尺寸单层二硫化钼. 物理学报, 2016, 65(12): 128101. doi: 10.7498/aps.65.128101
    [12] 王彬, 冯雅辉, 王秋实, 张伟, 张丽娜, 马晋文, 张浩然, 于广辉, 王桂强. 化学气相沉积法制备的石墨烯晶畴的氢气刻蚀. 物理学报, 2016, 65(9): 098101. doi: 10.7498/aps.65.098101
    [13] 韩林芷, 赵占霞, 马忠权. 化学气相沉积法制备大尺寸单晶石墨烯的工艺参数研究. 物理学报, 2014, 63(24): 248103. doi: 10.7498/aps.63.248103
    [14] 厉巧巧, 张昕, 吴江滨, 鲁妍, 谭平恒, 冯志红, 李佳, 蔚翠, 刘庆斌. 双层石墨烯位于18002150 cm-1频率范围内的和频拉曼模. 物理学报, 2014, 63(14): 147802. doi: 10.7498/aps.63.147802
    [15] 王浪, 冯伟, 杨连乔, 张建华. 化学气相沉积法制备石墨烯的铜衬底预处理研究. 物理学报, 2014, 63(17): 176801. doi: 10.7498/aps.63.176801
    [16] 厉巧巧, 韩文鹏, 赵伟杰, 鲁妍, 张昕, 谭平恒, 冯志红, 李佳. 缺陷单层和双层石墨烯的拉曼光谱及其激发光能量色散关系. 物理学报, 2013, 62(13): 137801. doi: 10.7498/aps.62.137801
    [17] 张秋慧, 韩敬华, 冯国英, 徐其兴, 丁立中, 卢晓翔. 石墨烯在强激光作用下改性的拉曼研究. 物理学报, 2012, 61(21): 214209. doi: 10.7498/aps.61.214209
    [18] 王文荣, 周玉修, 李铁, 王跃林, 谢晓明. 高质量大面积石墨烯的化学气相沉积制备方法研究. 物理学报, 2012, 61(3): 038702. doi: 10.7498/aps.61.038702
    [19] 陈东猛. 在不同应力下石墨烯中拉曼谱的G峰劈裂的变化. 物理学报, 2010, 59(9): 6399-6404. doi: 10.7498/aps.59.6399
    [20] 孙敦陆, 仇怀利, 杭 寅, 张连瀚, 祝世宁, 王爱华, 殷绍唐. 化学计量比LiNbO3晶体的激光显微拉曼光谱研究. 物理学报, 2004, 53(7): 2270-2274. doi: 10.7498/aps.53.2270
计量
  • 文章访问数:  5580
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-18
  • 修回日期:  2020-06-17
  • 上网日期:  2020-09-29
  • 刊出日期:  2020-10-05

/

返回文章
返回