搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

源气体流量比对氟化类金刚石薄膜蛋白吸附能力的影响

戴永丰 江美福 杨亦赏 周杨

引用本文:
Citation:

源气体流量比对氟化类金刚石薄膜蛋白吸附能力的影响

戴永丰, 江美福, 杨亦赏, 周杨

Influence of source gas flow ratio on the proteins adsorbability of F-DLC film

Dai Yong-Feng, Jiang Mei-Fu, Yang Yi-Shang, Zhou Yang
PDF
导出引用
  • 用316L不锈钢(SU316L)作基片,以高纯石墨作靶、CHF3和Ar作源气体,采用反应磁控溅射法在不同流量比R (CHF3/Ar)下制备了氟化类金刚石(F-DLC)薄膜. 利用双蒸水液滴法、BCA(二喹啉甲酸)法和傅里叶红外光谱(FTIR)探讨了影响薄膜蛋白吸附能力的因素. 结果表明,镀有F-DLC薄膜的SU316L表面的血小板黏附量明显减少,血小板的变形程度显著减轻,相应的白蛋白与纤维蛋白原的吸附比普遍高于未镀膜的SU316L表面的相应值,说明镀上F-DLC薄膜可以改善样品的血液相容性. 流量比为2 ∶1左右时制备出的F-DLC薄膜,其白蛋白与纤维蛋白原的吸附比值达到最大,相应的血液相容性最佳. 对薄膜的接触角和表面能以及FTIR光谱分析研究表明,SU316L表面的F-DLC薄膜的白蛋白与纤维蛋白原的吸附比及血液相容性与薄膜的中的-CFx键的含量(F/C比)和表面能(疏水性)直接相关,控制源气体流量比可以实现对薄膜的血液相容性的调制.
    The fluorinated diamond-like carbon (F-DLC) films are prepared by reactive magnetron sputtering under different gas flow radios with trifluoromethane (CHF3 ) and argon (Ar) used as source gases and pure graphite as a target on the surface of 316L stainless steel (SU316L). Factors which influence the protein adsorbability are discussed by double-stilled water, BCA and FTIR spectra. The results show that the surface of SU316L coated with F-DLC film could obviously reduce the number of adherent platelets and dramatically relieves the deformation of platelets, leading to a ratio of higher albumin to fibrinogen adsorption higher than that with using the SU316L substrates, which indicates that the SU316L coated with F-DLC film can improve the blood compatibility. The film has the highest ratio of albumin to fibrinogen adsorption and the best hemocompatibility when the ratio of gas flow is 2 ∶1. Furthermore, the measurements of the contact angle, the surface energy of films and FTIR spectra show that the ratio of albumin to fibrinogen adsorption and the hemocompatibility of F-DLC coated SU316L depend on the surface energy (hydrophobic nature) of films and the quantity of -CFx bonds (the ratio of F/C) contained in film. The modulating of blood compatibility of the films can be realized by the control of the ratio of source gas flow.
    [1]

    Park J B, Kim Y K 2003 Biomaterials Principles and Applications(Boca Raton:CRC Press)p1

    [2]

    Brunski J B 2004 Biomaterials Science an introduction to Materials in Medicine(San Diego:Elsevier Academic Press)p137

    [3]
    [4]
    [5]

    Haidopoulos M, Turgeon S, Sarra-Bournet C 2006 Mater. Sci.: Mater. Med. 17 647

    [6]
    [7]

    Yu Y T 2000 Bio-medical Materials (Tianjin:Tianjin University Press) p20 (in Chinese)[俞耀庭 2000 生物医用材料(天津:天津大学出版社)第20页]

    [8]
    [9]

    Gorbet M B, Sefton M V 2004 Biomaterials 25 5681

    [10]

    Armitage D A, Parker T L, Grant D M 2003 Biomed. Mater. Res. A 66 129

    [11]
    [12]
    [13]

    Gutensohn K, Beythien C,Bau J, Fenner T,Grewe P,Koester R,Padmanaban K,Kuehnl P 2000 Thrombosis Res. 99 577

    [14]
    [15]

    Ding M H,Wang B L, LI L, Zheng Y F 2010 Surf. Coat. Technol. 204 2519

    [16]
    [17]

    Zhu L, Jiang M F, Ning Z Y, Du J L, Wang P J 2009 Acta Phys. Sin. 58 6430 (in Chinese)[朱 丽、江美福、宁兆元、杜记龙、王培君 2009 物理学报 58 6430]

    [18]

    Wang P J, Jiang M F, Xin Y, Du J L, Dai Y F 2010 Acta Phys. Sin. 59 8920 (in Chinese)[王培君、江美福、辛 煜、杜记龙、戴永丰 2010 物理学报 59 8920]

    [19]
    [20]

    Hakovirta M, He X M, Nastasi M 2000 J. Appl. Phy. 88 1456

    [21]
    [22]
    [23]

    Terumitsu H, Satoshi Y, Aki K, Yuko O, Atsushi H, Koki T, Tetsuya S 2007 Biomed. Mater. Res. A 83 1192

    [24]

    Goodman S L, Grasel T G, Cooper S L, Albrecht R M 1989 Biomed. Mater. Res. 23 105

    [25]
    [26]

    Allen R D, Zacharski L R, Widirstky S T, Rosenstein R, Zaitlin L M, Burgess D R 1979 Cell Biol. 83 126

    [27]
    [28]
    [29]

    Yu K, Chen Z T, Qiu J 1996 Biomed. Eng. 13 189 (in Chinese) [喻 凯、陈治涛、邱 静 1996 生物医学工程学杂志 13 189]

    [30]

    Wen X J 1997 Biomed. Eng. 14 164 (in Chinese) [文学军 1997 生物医学工程杂志 14 164]

    [31]
    [32]
    [33]

    Wang C H, Leng X G 1998 Foreign Medical Sciences (Biomedical Engineering Fascicle) 21 1 (in Chinese) [王传华、冷希岗 1998 国外医学:生物医学工程分册 21 1]

    [34]
    [35]

    Whicher S J, Brash J L 1978 Biomed. Mater. Res. 12 181

    [36]

    Dion I, Roques X, Baquey C, Baudet E, Cathalinat B B, More N 1993 Biomed. Mater. Eng. 3 51

    [37]
    [38]
    [39]

    Jones M I, McColl I R, Grant D M, Paker K G, Paker T L 2000 Biomed. Mater. Res. 52 413

    [40]

    Cui F Z, Li D J 2000 Surf. Coat. Technol. 131 481

    [41]
    [42]
    [43]

    Li B G, Yin J, Na J J, Yin G F, Zheng C Q 2005 Biomed. Eng. 22 20 (in Chinese) [李伯刚、殷 杰、那娟娟、尹光福、郑昌琼 2005 生物医学工程学杂志 22 20]

    [44]
    [45]

    Jiang M F, Ning Z Y 2006 Surf. Coat. Technol. 200 3682

    [46]

    Jiang M F, Ning Z Y 2004 Acta Phys. Sin. 53 1588 (in Chinese) [江美福、宁兆元 2004 物理学报 53 1588]

    [47]
    [48]
    [49]

    Takada N, Shibagaki K, Kadota K, Oyama K I 2001 Vac.Sci.Technol. A 19 689

    [50]
    [51]

    Wang X, Harris H R, Bouldin K, Temkin H, Gangopadhyay S 2000 J. Appl. Phys. 87 621

    [52]
    [53]

    Yokomichi H 1999 J. Appl. Phys. 86 2468

    [54]

    Huang S, Xin Y, Ning Z Y 2002 Acta Phys. Sin. 51 2635 (in Chinese) [黄 松、辛 煜、宁兆元 2002 物理学报 51 2635]

    [55]
    [56]

    Ishihara M, Kosaka T, Nakamura T, Tsugawa K, Hasegawa M, Kokai F, Koga Y 2006 Diamond Relat. Mater. 15 1011

    [57]
  • [1]

    Park J B, Kim Y K 2003 Biomaterials Principles and Applications(Boca Raton:CRC Press)p1

    [2]

    Brunski J B 2004 Biomaterials Science an introduction to Materials in Medicine(San Diego:Elsevier Academic Press)p137

    [3]
    [4]
    [5]

    Haidopoulos M, Turgeon S, Sarra-Bournet C 2006 Mater. Sci.: Mater. Med. 17 647

    [6]
    [7]

    Yu Y T 2000 Bio-medical Materials (Tianjin:Tianjin University Press) p20 (in Chinese)[俞耀庭 2000 生物医用材料(天津:天津大学出版社)第20页]

    [8]
    [9]

    Gorbet M B, Sefton M V 2004 Biomaterials 25 5681

    [10]

    Armitage D A, Parker T L, Grant D M 2003 Biomed. Mater. Res. A 66 129

    [11]
    [12]
    [13]

    Gutensohn K, Beythien C,Bau J, Fenner T,Grewe P,Koester R,Padmanaban K,Kuehnl P 2000 Thrombosis Res. 99 577

    [14]
    [15]

    Ding M H,Wang B L, LI L, Zheng Y F 2010 Surf. Coat. Technol. 204 2519

    [16]
    [17]

    Zhu L, Jiang M F, Ning Z Y, Du J L, Wang P J 2009 Acta Phys. Sin. 58 6430 (in Chinese)[朱 丽、江美福、宁兆元、杜记龙、王培君 2009 物理学报 58 6430]

    [18]

    Wang P J, Jiang M F, Xin Y, Du J L, Dai Y F 2010 Acta Phys. Sin. 59 8920 (in Chinese)[王培君、江美福、辛 煜、杜记龙、戴永丰 2010 物理学报 59 8920]

    [19]
    [20]

    Hakovirta M, He X M, Nastasi M 2000 J. Appl. Phy. 88 1456

    [21]
    [22]
    [23]

    Terumitsu H, Satoshi Y, Aki K, Yuko O, Atsushi H, Koki T, Tetsuya S 2007 Biomed. Mater. Res. A 83 1192

    [24]

    Goodman S L, Grasel T G, Cooper S L, Albrecht R M 1989 Biomed. Mater. Res. 23 105

    [25]
    [26]

    Allen R D, Zacharski L R, Widirstky S T, Rosenstein R, Zaitlin L M, Burgess D R 1979 Cell Biol. 83 126

    [27]
    [28]
    [29]

    Yu K, Chen Z T, Qiu J 1996 Biomed. Eng. 13 189 (in Chinese) [喻 凯、陈治涛、邱 静 1996 生物医学工程学杂志 13 189]

    [30]

    Wen X J 1997 Biomed. Eng. 14 164 (in Chinese) [文学军 1997 生物医学工程杂志 14 164]

    [31]
    [32]
    [33]

    Wang C H, Leng X G 1998 Foreign Medical Sciences (Biomedical Engineering Fascicle) 21 1 (in Chinese) [王传华、冷希岗 1998 国外医学:生物医学工程分册 21 1]

    [34]
    [35]

    Whicher S J, Brash J L 1978 Biomed. Mater. Res. 12 181

    [36]

    Dion I, Roques X, Baquey C, Baudet E, Cathalinat B B, More N 1993 Biomed. Mater. Eng. 3 51

    [37]
    [38]
    [39]

    Jones M I, McColl I R, Grant D M, Paker K G, Paker T L 2000 Biomed. Mater. Res. 52 413

    [40]

    Cui F Z, Li D J 2000 Surf. Coat. Technol. 131 481

    [41]
    [42]
    [43]

    Li B G, Yin J, Na J J, Yin G F, Zheng C Q 2005 Biomed. Eng. 22 20 (in Chinese) [李伯刚、殷 杰、那娟娟、尹光福、郑昌琼 2005 生物医学工程学杂志 22 20]

    [44]
    [45]

    Jiang M F, Ning Z Y 2006 Surf. Coat. Technol. 200 3682

    [46]

    Jiang M F, Ning Z Y 2004 Acta Phys. Sin. 53 1588 (in Chinese) [江美福、宁兆元 2004 物理学报 53 1588]

    [47]
    [48]
    [49]

    Takada N, Shibagaki K, Kadota K, Oyama K I 2001 Vac.Sci.Technol. A 19 689

    [50]
    [51]

    Wang X, Harris H R, Bouldin K, Temkin H, Gangopadhyay S 2000 J. Appl. Phys. 87 621

    [52]
    [53]

    Yokomichi H 1999 J. Appl. Phys. 86 2468

    [54]

    Huang S, Xin Y, Ning Z Y 2002 Acta Phys. Sin. 51 2635 (in Chinese) [黄 松、辛 煜、宁兆元 2002 物理学报 51 2635]

    [55]
    [56]

    Ishihara M, Kosaka T, Nakamura T, Tsugawa K, Hasegawa M, Kokai F, Koga Y 2006 Diamond Relat. Mater. 15 1011

    [57]
  • [1] 沈永青, 张志强, 廖斌, 吴先映, 张旭, 华青松, 鲍曼雨. 高功率脉冲磁控溅射技术制备掺氮类金刚石薄膜的磨蚀性能. 物理学报, 2020, 69(10): 108101. doi: 10.7498/aps.69.20200021
    [2] 潘越, 赵强, 江舸, 周杨, 江美福, 杨亦赏. SiC过渡层对氟化类金刚石薄膜附着特性的影响. 物理学报, 2013, 62(1): 015209. doi: 10.7498/aps.62.015209
    [3] 张翅, 陈新亮, 王斐, 闫聪博, 黄茜, 赵颖, 张晓丹, 耿新华. 衬底温度对反应磁控溅射W掺杂ZnO薄膜的微观结构及光电性能的影响. 物理学报, 2012, 61(23): 238101. doi: 10.7498/aps.61.238101
    [4] 栾田宝, 刘明, 鲍善永, 张庆瑜. 氧化处理的蓝宝石基片上沉积的ZnO/MgO多量子阱的结构及光学性质研究. 物理学报, 2010, 59(3): 2038-2044. doi: 10.7498/aps.59.2038
    [5] 王培君, 江美福, 杜记龙, 戴永丰. 射频反应磁控溅射法制备的氟化类金刚石薄膜摩擦特性研究. 物理学报, 2010, 59(12): 8920-8926. doi: 10.7498/aps.59.8920
    [6] 丁万昱, 徐军, 陆文琪, 邓新绿, 董闯. 微波ECR磁控溅射制备SiNx薄膜的XPS结构研究. 物理学报, 2009, 58(6): 4109-4116. doi: 10.7498/aps.58.4109
    [7] 朱丽, 江美福, 宁兆元, 杜记龙, 王培君. 不同射频输入功率下制备的氟化类金刚石碳膜疏水性研究. 物理学报, 2009, 58(9): 6430-6435. doi: 10.7498/aps.58.6430
    [8] 姜雪宁, 王 昊, 马小叶, 孟宪芹, 张庆瑜. 蓝宝石衬底上Gd2O3掺杂CeO2氧离子导体电解质薄膜的生长及电学性能. 物理学报, 2008, 57(3): 1851-1856. doi: 10.7498/aps.57.1851
    [9] 刘 明, 刘志文, 谷建峰, 秦福文, 马春雨, 张庆瑜. 蓝宝石基片的处理方法对ZnO薄膜生长行为的影响. 物理学报, 2008, 57(2): 1133-1140. doi: 10.7498/aps.57.1133
    [10] 肖剑荣, 徐 慧, 郭爱敏, 王焕友. 含氮氟化类金刚石(FN-DLC)薄膜的研究:(Ⅱ)射频功率对薄膜光学带隙的影响. 物理学报, 2007, 56(3): 1809-1814. doi: 10.7498/aps.56.1809
    [11] 肖剑荣, 徐 慧, 郭爱敏, 王焕友. 含氮氟化类金刚石(FN-DLC)薄膜的研究:(Ⅰ) sp结构与化学键分析. 物理学报, 2007, 56(3): 1802-1808. doi: 10.7498/aps.56.1802
    [12] 肖剑荣, 徐 慧, 王焕友, 邓超生, 李明君. 含氮氟化类金刚石(FN-DLC)薄膜的研究:(Ⅳ)氮掺杂对薄膜结构的影响. 物理学报, 2007, 56(5): 3004-3009. doi: 10.7498/aps.56.3004
    [13] 肖剑荣, 徐 慧, 邓超生, 王焕友, 李燕峰. 含氮氟化类金刚石(FN-DLC)薄膜的研究:(Ⅲ)疏水性能分析. 物理学报, 2007, 56(5): 2998-3003. doi: 10.7498/aps.56.2998
    [14] 谷建峰, 刘志文, 刘 明, 付伟佳, 马春雨, 张庆瑜. Si(001)基片上反应射频磁控溅射ZnO薄膜的两步生长方法. 物理学报, 2007, 56(4): 2369-2376. doi: 10.7498/aps.56.2369
    [15] 李 勇, 孙成伟, 刘志文, 张庆瑜. 磁控溅射ZnO薄膜生长的等离子体发射光谱研究. 物理学报, 2006, 55(8): 4232-4237. doi: 10.7498/aps.55.4232
    [16] 杨武保, 范松华, 张谷令, 马培宁, 张守忠, 杜 健. 非平衡磁控溅射法类金刚石薄膜的制备及分析. 物理学报, 2005, 54(10): 4944-4948. doi: 10.7498/aps.54.4944
    [17] 江美福, 宁兆元. 氟化类金刚石薄膜的拉曼和红外光谱结构研究. 物理学报, 2004, 53(5): 1588-1593. doi: 10.7498/aps.53.1588
    [18] 江美福, 宁兆元. 反应磁控溅射法制备的氟化类金刚石薄膜的XPS结构研究. 物理学报, 2004, 53(9): 3220-3224. doi: 10.7498/aps.53.3220
    [19] 潘必才, 夏上达, 方容川. 人工金刚石薄膜生长过程中有关反应活性的研究. 物理学报, 1995, 44(5): 763-771. doi: 10.7498/aps.44.763
    [20] 季航, 赵特秀, 王晓平, 董翊. 磁控溅射MO薄膜电阻率的原位研究. 物理学报, 1993, 42(8): 1340-1345. doi: 10.7498/aps.42.1340
计量
  • 文章访问数:  5571
  • PDF下载量:  529
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-12-17
  • 修回日期:  2011-01-19
  • 刊出日期:  2011-11-15

源气体流量比对氟化类金刚石薄膜蛋白吸附能力的影响

  • 1. 苏州大学物理科学与技术学院,苏州 215006

摘要: 用316L不锈钢(SU316L)作基片,以高纯石墨作靶、CHF3和Ar作源气体,采用反应磁控溅射法在不同流量比R (CHF3/Ar)下制备了氟化类金刚石(F-DLC)薄膜. 利用双蒸水液滴法、BCA(二喹啉甲酸)法和傅里叶红外光谱(FTIR)探讨了影响薄膜蛋白吸附能力的因素. 结果表明,镀有F-DLC薄膜的SU316L表面的血小板黏附量明显减少,血小板的变形程度显著减轻,相应的白蛋白与纤维蛋白原的吸附比普遍高于未镀膜的SU316L表面的相应值,说明镀上F-DLC薄膜可以改善样品的血液相容性. 流量比为2 ∶1左右时制备出的F-DLC薄膜,其白蛋白与纤维蛋白原的吸附比值达到最大,相应的血液相容性最佳. 对薄膜的接触角和表面能以及FTIR光谱分析研究表明,SU316L表面的F-DLC薄膜的白蛋白与纤维蛋白原的吸附比及血液相容性与薄膜的中的-CFx键的含量(F/C比)和表面能(疏水性)直接相关,控制源气体流量比可以实现对薄膜的血液相容性的调制.

English Abstract

参考文献 (57)

目录

    /

    返回文章
    返回