搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

pMOS器件直流应力负偏置温度不稳定性效应随器件基本参数变化的分析

曹建民 贺威 黄思文 张旭琳

引用本文:
Citation:

pMOS器件直流应力负偏置温度不稳定性效应随器件基本参数变化的分析

曹建民, 贺威, 黄思文, 张旭琳

Dependence of the DC stress negative bias temperature instability effect on basic device parameters in pMOSFET

Cao Jian-Min, He Wei, Huang Si-Wen, Zhang Xu-Lin
PDF
导出引用
  • 应用负偏置温度不稳定性(negative bias temperature instability, NBTI), 退化氢分子的漂移扩散模型, 与器件二维数值模拟软件结合在一起进行计算, 并利用已有的实验数据和基本器件物理和规律, 分析直流应力NBTI效应随器件沟道长度、栅氧层厚度和掺杂浓度等基本参数的变化规律, 是研究NBTI可靠性问题发生和发展机理变化的一种有效方法. 分析结果显示, NBTI效应不受器件沟道长度变化的影响, 而主要受到栅氧化层厚度变化的影响; 栅氧化层厚度的减薄和栅氧化层电场增强的影响是一致的, 决定了器件退化按指数规律变化; 当沟道掺杂浓度提高, NBTI效应将减弱, 这是因为器件沟道表面空穴浓度降低引起的; 然而当掺杂浓度提高到器件的源漏泄漏电流很小时(小泄露电流器件), NBTI效应有明显的增强. 这些结论对认识NBTI效应的发展规律以及对高性能器件的设计具有重要的指导意义.
    To analyze the dependence of the DC stress negative bias temperature instability (NBTI) effect on basic device paraments, such as the channel length, the gate oxide thickness, the doping concentration, we solve the hydrogen molecule drift-diffusion model of NBTI together with the semiconductor device equations. The results are compared with the existing experimental data and the basic laws and physics of devices, which is necessary for reliability studies of NBTI. The analysis results show that NBTI effect is not affected by the channel length change, but maily by the thickness of the gate oxide layer. Gate oxide thickness thinning and gate oxide layer electric field enhancement effect are consistent, which determines the device degradation in the manner of exponential law. With channel doping concentration increasing, NBTI effect will be reduced, which is because the device channel surface hole concentration is reduced, however with the doping concentration increases to such a value that the device source drain leakage current is very low (low leakage device), the MBTI effect is obviously enhanced. These are helpful for understanding NBTI and designing the high performance device.
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 11109052)、深圳市基础研究计划(批准号: JC201005280558A, JC201005280565A)资助的课题.
    • Funds: Project supported by Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11109052), and Shenzhen Science and Technology Development Funds, China (Grant Nos. JC201005280558A, JC201005280565A).
    [1]

    Schroder D K, Babcock J A 2003 J. Appl. Phys. 94 1

    [2]

    Mahapatra S, Alam M A, Bharath P 2005 Microelectr. Eng. 80 114

    [3]

    Huard V, Denais M, Parthasarathy C 2006 Microelectr. Reliab. 46 1

    [4]

    Alam M A, Kufluoglu H, Varghese D, Mahapatra S 2007 Microelectr. Reliab. 47 853

    [5]

    Mahapatra S, Islam A E, Deora S, Maheta V D, Joshi K, Jain A, Alam M A 2011 Proceedings of IEEE International Reliability Physics Symposium United States, April 10-14, 2011 p6A.3.1

    [6]

    Kumar S V, Kim C H, Sapatnekar S S 2009 IEEE Trans. Dev. Mater. Rel. 9 537

    [7]

    Alam M A, Mahapatra S 2005 Microelectr. Reliab. 45 71

    [8]

    Kufluoglu H, Alam M A 2007 IEEE Trans. Electron Dev. 54 1101

    [9]

    Kufluoglu H, Alam M A 2006 IEEE Trans. Electron. Dev. 53 1120

    [10]

    Hao Y, Liu H X 2008 Reliability and Effecticenese Mechanism in Micro Manometer MOS Device (Beijing: Science Press) pp265, 230, 232 (in Chinese) [郝跃, 刘红霞 2008 微纳米MOS器件可靠性与实效机理 (北京: 科学出版社) 第265, 230, 232页]

    [11]

    Bénard C, Math G, Fornara P, Ogier J, Goguenheim D 2009 Microelectr. Reliab. 49 1008

    [12]

    Islam A E, Kufluoglu H, Varghese D, Mahapatra S, Alam M A 2007 IEEE Trans. Electron Dev. 54 2143

    [13]

    Krishnan A T, Chancellor C, Chakravarthi S, Nicollian P E, Reddy V, Varghese A, Khamankar R B, Krishnan S, Levitov L 2005 Proceedings of International Electron Devices Meeting United States, December 5-7, 2005 p688

    [14]

    Grasser T, Entner R, Triebl O, Enichlmair H, Minixhofer R 2006 International Conference on Simulation of Semiconductor Processes and Devices United States, September 5-7 2006 p330

    [15]

    Chuang C T 2009 Proceedings of IEEE International Symposium on Circuit and Systems Taiwan, China, May 24-27 2009 p2305

    [16]

    Reisinger H, Blank O, Heinrigs W, Muhlhoff A, Gustin W, Schlunder C 2006 Proceedings of IEEE International Reliability Physics Symposium United States, March 26-30, 2006 p448

    [17]

    Stathis J H, Zafar S 2006 Microelectr. Reliab. 46 270

    [18]

    Liu H X, Hao Y 2007 Chin. Phys. 16 2111

  • [1]

    Schroder D K, Babcock J A 2003 J. Appl. Phys. 94 1

    [2]

    Mahapatra S, Alam M A, Bharath P 2005 Microelectr. Eng. 80 114

    [3]

    Huard V, Denais M, Parthasarathy C 2006 Microelectr. Reliab. 46 1

    [4]

    Alam M A, Kufluoglu H, Varghese D, Mahapatra S 2007 Microelectr. Reliab. 47 853

    [5]

    Mahapatra S, Islam A E, Deora S, Maheta V D, Joshi K, Jain A, Alam M A 2011 Proceedings of IEEE International Reliability Physics Symposium United States, April 10-14, 2011 p6A.3.1

    [6]

    Kumar S V, Kim C H, Sapatnekar S S 2009 IEEE Trans. Dev. Mater. Rel. 9 537

    [7]

    Alam M A, Mahapatra S 2005 Microelectr. Reliab. 45 71

    [8]

    Kufluoglu H, Alam M A 2007 IEEE Trans. Electron Dev. 54 1101

    [9]

    Kufluoglu H, Alam M A 2006 IEEE Trans. Electron. Dev. 53 1120

    [10]

    Hao Y, Liu H X 2008 Reliability and Effecticenese Mechanism in Micro Manometer MOS Device (Beijing: Science Press) pp265, 230, 232 (in Chinese) [郝跃, 刘红霞 2008 微纳米MOS器件可靠性与实效机理 (北京: 科学出版社) 第265, 230, 232页]

    [11]

    Bénard C, Math G, Fornara P, Ogier J, Goguenheim D 2009 Microelectr. Reliab. 49 1008

    [12]

    Islam A E, Kufluoglu H, Varghese D, Mahapatra S, Alam M A 2007 IEEE Trans. Electron Dev. 54 2143

    [13]

    Krishnan A T, Chancellor C, Chakravarthi S, Nicollian P E, Reddy V, Varghese A, Khamankar R B, Krishnan S, Levitov L 2005 Proceedings of International Electron Devices Meeting United States, December 5-7, 2005 p688

    [14]

    Grasser T, Entner R, Triebl O, Enichlmair H, Minixhofer R 2006 International Conference on Simulation of Semiconductor Processes and Devices United States, September 5-7 2006 p330

    [15]

    Chuang C T 2009 Proceedings of IEEE International Symposium on Circuit and Systems Taiwan, China, May 24-27 2009 p2305

    [16]

    Reisinger H, Blank O, Heinrigs W, Muhlhoff A, Gustin W, Schlunder C 2006 Proceedings of IEEE International Reliability Physics Symposium United States, March 26-30, 2006 p448

    [17]

    Stathis J H, Zafar S 2006 Microelectr. Reliab. 46 270

    [18]

    Liu H X, Hao Y 2007 Chin. Phys. 16 2111

  • [1] 孙伟, 安维明, 仲佳勇. 磁场对激光驱动Kelvin-Helmholtz不稳定性影响的二维数值研究. 物理学报, 2020, 69(24): 244701. doi: 10.7498/aps.69.20201167
    [2] 刘迎, 陈志华, 郑纯. 黏性各向异性磁流体Kelvin-Helmholtz不稳定性: 二维数值研究. 物理学报, 2019, 68(3): 035201. doi: 10.7498/aps.68.20181747
    [3] 汤华莲, 许蓓蕾, 庄奕琪, 张丽, 李聪. 工艺偏差下PMOS器件的负偏置温度不稳定效应分布特性. 物理学报, 2016, 65(16): 168502. doi: 10.7498/aps.65.168502
    [4] 张恒, 段文山. 二维玻色-爱因斯坦凝聚中孤立波的调制不稳定性. 物理学报, 2013, 62(4): 044703. doi: 10.7498/aps.62.044703
    [5] 王立锋, 叶文华, 范征锋, 李英骏. 二维不可压流体Kelvin-Helmholtz不稳定性的弱非线性研究. 物理学报, 2009, 58(7): 4787-4792. doi: 10.7498/aps.58.4787
    [6] 王立锋, 叶文华, 范征锋, 孙彦乾, 郑炳松, 李英骏. 二维可压缩流体Kelvin-Helmholtz不稳定性. 物理学报, 2009, 58(9): 6381-6386. doi: 10.7498/aps.58.6381
    [7] 胡 玥, 饶海波, 李君飞. ITO/有机半导体/金属结构OLED器件的数值模拟. 物理学报, 2008, 57(9): 5928-5932. doi: 10.7498/aps.57.5928
    [8] 李忠贺, 刘红侠, 郝 跃. 超深亚微米PMOS器件的NBTI退化机理. 物理学报, 2006, 55(2): 820-824. doi: 10.7498/aps.55.820
    [9] 魏新华, 周国成, 曹晋滨, 李柳元. 无碰撞电流片低频电磁模不稳定性:MHD模型. 物理学报, 2005, 54(7): 3228-3235. doi: 10.7498/aps.54.3228
    [10] 郭媛媛, 陈晓松. 二元高斯核模型的相不稳定性研究. 物理学报, 2005, 54(12): 5755-5762. doi: 10.7498/aps.54.5755
    [11] 刘红侠, 郑雪峰, 郝 跃. NBT导致的深亚微米PMOS器件退化与物理机理. 物理学报, 2005, 54(3): 1373-1377. doi: 10.7498/aps.54.1373
    [12] 吴俊峰, 叶文华, 张维岩, 贺贤土. 二维不可压流体瑞利-泰勒不稳定性的非线性阈值公式. 物理学报, 2003, 52(7): 1688-1693. doi: 10.7498/aps.52.1688
    [13] 简广德, 董家齐. 环形等离子体中电子温度梯度不稳定性的粒子模拟. 物理学报, 2003, 52(7): 1656-1662. doi: 10.7498/aps.52.1656
    [14] 贺凯芬, 胡岗. 负能模式在驱动漂移波非线性不稳定性中的作用(Ⅱ)——与正能模式交换,“回避交叉”和Hopf分岔. 物理学报, 1993, 42(7): 1042-1049. doi: 10.7498/aps.42.1042
    [15] 贺凯芬, 胡岗. 负能模式在驱动漂移波非线性不稳定性中的作用(Ⅰ)——向正能模式的转变和双稳态. 物理学报, 1993, 42(7): 1035-1041. doi: 10.7498/aps.42.1035
    [16] 刘晶南, 孙鑫. 电子关联与二维晶格的不稳定性. 物理学报, 1992, 41(1): 80-86. doi: 10.7498/aps.41.80
    [17] 王德真, 郭世宠, 蔡诗东. 高β等离子体中低混杂漂移不稳定性. 物理学报, 1990, 39(6): 67-74. doi: 10.7498/aps.39.67-2
    [18] 黄朝松, 任兆杏, 邱励俭. 热电子等离子体的耗散漂移不稳定性. 物理学报, 1987, 36(9): 1112-1121. doi: 10.7498/aps.36.1112
    [19] 涂传诒. 磁层顶中的低混杂漂移不稳定性. 物理学报, 1982, 31(1): 1-16. doi: 10.7498/aps.31.1
    [20] 贾惟义, 张鹏翔. 磁晶各向异性场引起的YIG单晶微波器件温度不稳定性的最佳补偿. 物理学报, 1976, 25(3): 254-264. doi: 10.7498/aps.25.254
计量
  • 文章访问数:  6532
  • PDF下载量:  529
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-03-30
  • 修回日期:  2012-05-23
  • 刊出日期:  2012-11-05

/

返回文章
返回