搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

静磁场复合电流下时效对Cu-Cr-Zr合金组织及性能的影响

饶显君 钟云波 张增光 王志强 邓康 任忠鸣 徐匡迪

引用本文:
Citation:

静磁场复合电流下时效对Cu-Cr-Zr合金组织及性能的影响

饶显君, 钟云波, 张增光, 王志强, 邓康, 任忠鸣, 徐匡迪

Electrical and mechanical properties of a Cu-Cr-Zr alloy aged under an imposed DC current and static magnetic field

Rao Xian-Jun, Zhong Yun-Bo, Zhang Zeng-Guang, Wang Zhi-Qiang, Deng Kang, Ren Zhong-Ming, Xu Kuang-Di
PDF
导出引用
  • 本文在经过固溶和冷变形处理Cu-Cr-Zr合金的等温时效过程中同时施加电流密度为100 A/cm2的直流电流和不同磁感应强度的静磁场, 发现电磁复合场能显著影响Cu-Cr-Zr合金的组织及性能.和无磁场下时效后合金性能相比, 施加磁场后的合金电导率和显微硬度值均有一定程度的升高, 其中在350 ℃, 10 T磁场下效果最明显, 分别升高了22.1% IACS和25.3 HV. 利用透射电镜观察显微组织观察发现, 施加磁场后合金组织中位错密度有所降低, 同时出现了大量细小弥散的铬析出物, 表明电磁复合场能进一步促进铜合金的时效过程, 在低温时效时尤其明显. 分析认为, 电磁复合场对Cu-Cr-Zr合金时效过程的促进作用机理是磁场增强了电流的"电子风"效应.
    In this paper, Cu-0.41wt.%Cr-0.21wt.%Zr alloy is subjected to an isochronal aging treatment with a DC electric current (100A/cm2) and a static magnetic field simultaneously imposed. The alloy in the form of plate with a thickness of 2 mm is solid-solution-treated and cold deformed with a total area reduction of more than 98% before aging. The results indicate that the conductivity and micro hardness of the sample are significantly improved by the imposed electric-magnetic field. The conductivity of the sample increases with magnetic flux density (MFD) improving, especially at a lower aging temperature (350 ℃), and a maximum improvement of 22.1% IACS in conductivity could be obtained with a 10 T magnetic field. For the property of micro hardness, it increases with MFD increasing at a lower aging temperature (350 ℃), while at a higher aging temperature, it first increases and then decreases with MFD increasing. The effects of the DC current and magnetic field on the microstructure of the alloy are investigated by transmission electron microscopy. A lower dislocation density and more Cr precipitation are observed under electric-magnetic couple field than under the DC current only. It indicates that the electric and magnetic fields enhance the aging process of Cu-Cr-Zr alloy distinctly. According to the experimental results, we believe that the main mechanism of the influence of electric and magnetic fields on the Cu-Cr-Zr alloy is that the magnetic field enhances the interaction between solute atoms, vacancies, dislocations and electron wind force, thereby intensifing the effect of the dc current.
    • 基金项目: 国家高技术研究发展计划(批准号:2009AA03Z109)、 上海市教育委员会重点项目 (批准号: 09zz98)、 上海市政府科学技术委员会重点项目(批准号: 09dz1206401, 09dz1206402)和高等学校博士学科点专项科研基金(批准号: 20093108110012)资助的课题.
    • Funds: Project supported by the National High-tech R&D Program of China (Grant No. 2009AA03Z109), the Key Research and Innovation Program from Shanghai Municipal Education Commission (Grant No. 09zz98), the Key Project from Science and Technology Commission of Shanghai Municipality (Grant Nos. 09dz1206401, 09dz1206402), and the Doctoral Program Foundation of Institutions of Higher Education of China (Grant No. 20093108110012).
    [1]

    Qiang L, Xiang Z, Yan G 2006 Metall. Mater. Trans. A 37 3233

    [2]

    Liu P, Kang B X, Cao G 1999 Mater. Sci. Eng. A 265 262

    [3]

    Vinogradov A, Patlan V, Suzuki Y 2003 Acta Mater. 50 1639

    [4]

    Henmi Z, Nagai T 1969 Trans. Jpn. Inst. Metals. 10 305

    [5]

    Tsuchiya K, Kawamura H 1996 J. Nucl. Mater. 233-237 913

    [6]

    Watanabe C, Monzen R, Tazaki K 2008 J. Mater. Sci. 43 813

    [7]

    Shimotomai M, Maruta K, Mine K, Matsui M 2003 Acta Mater. 51 2921

    [8]

    Peters C T, Miodownik A P 1973 Scripta Metall. 7 955

    [9]

    Martikainen H O, Lindroos V K, 1981 Scand. J. Metall. 10 3

    [10]

    Youdelis W V, Colton D R 1964 J. Canadian Journal of Physics 42 2217

    [11]

    Nakajima H, Maekawa S 1985 Japan Inst. Metals. 26 1

    [12]

    Liu W C 2006 Ma. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese) [刘万忱 2007 硕士学位论文 (大连: 大连理工大学)]

    [13]

    Koppenaal T J, Simcoe C R 1963 Trans. Met. Soc. AIME. 227 615

    [14]

    Zhou Q, Yang Y, Tang J, Hu Z 2006 Acta Metall. Sin. 42 28

    [15]

    Conrd H, Karam N, Mannan S 1983 Scripta Mater. 17 411

    [16]

    Conrd H 2000 Mater. Sci. Eng. A 287 227

    [17]

    Wang Z Q, Zhong Y B, Lei Z S, Ren W L, Ren Z M, Deng K 2009 J. Alloy Compd. 471 172

    [18]

    Wang Z Q, Zhong Y B, Cao G H, Wang C, Wang J, Ren W L, Ren Z M. 2009 J. Alloy Compd. 479 303

    [19]

    Lou L, Zhong Y B, Ren Z M 2006 Chin J Nonferrous Met. 16 728 (in Chinese) [楼磊, 钟云波, 任忠鸣 2006 中国有色金属学报 16 728]

    [20]

    Suzuki H, Kanno M J 1972 Japan Inst. Metals. 36 363

  • [1]

    Qiang L, Xiang Z, Yan G 2006 Metall. Mater. Trans. A 37 3233

    [2]

    Liu P, Kang B X, Cao G 1999 Mater. Sci. Eng. A 265 262

    [3]

    Vinogradov A, Patlan V, Suzuki Y 2003 Acta Mater. 50 1639

    [4]

    Henmi Z, Nagai T 1969 Trans. Jpn. Inst. Metals. 10 305

    [5]

    Tsuchiya K, Kawamura H 1996 J. Nucl. Mater. 233-237 913

    [6]

    Watanabe C, Monzen R, Tazaki K 2008 J. Mater. Sci. 43 813

    [7]

    Shimotomai M, Maruta K, Mine K, Matsui M 2003 Acta Mater. 51 2921

    [8]

    Peters C T, Miodownik A P 1973 Scripta Metall. 7 955

    [9]

    Martikainen H O, Lindroos V K, 1981 Scand. J. Metall. 10 3

    [10]

    Youdelis W V, Colton D R 1964 J. Canadian Journal of Physics 42 2217

    [11]

    Nakajima H, Maekawa S 1985 Japan Inst. Metals. 26 1

    [12]

    Liu W C 2006 Ma. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese) [刘万忱 2007 硕士学位论文 (大连: 大连理工大学)]

    [13]

    Koppenaal T J, Simcoe C R 1963 Trans. Met. Soc. AIME. 227 615

    [14]

    Zhou Q, Yang Y, Tang J, Hu Z 2006 Acta Metall. Sin. 42 28

    [15]

    Conrd H, Karam N, Mannan S 1983 Scripta Mater. 17 411

    [16]

    Conrd H 2000 Mater. Sci. Eng. A 287 227

    [17]

    Wang Z Q, Zhong Y B, Lei Z S, Ren W L, Ren Z M, Deng K 2009 J. Alloy Compd. 471 172

    [18]

    Wang Z Q, Zhong Y B, Cao G H, Wang C, Wang J, Ren W L, Ren Z M. 2009 J. Alloy Compd. 479 303

    [19]

    Lou L, Zhong Y B, Ren Z M 2006 Chin J Nonferrous Met. 16 728 (in Chinese) [楼磊, 钟云波, 任忠鸣 2006 中国有色金属学报 16 728]

    [20]

    Suzuki H, Kanno M J 1972 Japan Inst. Metals. 36 363

  • [1] 宋睿, 刘雪梅, 王海滨, 吕皓, 宋晓艳. 机器学习辅助的硬质合金硬度预测. 物理学报, 2024, 73(12): 126201. doi: 10.7498/aps.73.20240284
    [2] 白成, 吴用, 辛雨慈, 牟俊峰, 江俊颖, 丁鼎, 夏雷, 余鹏. NaCu5S3复合NixFe-LDH的结构对水解氧析出性能的影响. 物理学报, 2023, 72(10): 108201. doi: 10.7498/aps.72.20230146
    [3] 王凯乐, 杨文奎, 史新成, 侯华, 赵宇宏. 相场法研究AlxCuMnNiFe高熵合金富Cu相析出机理. 物理学报, 2023, 72(7): 076102. doi: 10.7498/aps.72.20222439
    [4] 蒋新安, 赵宇宏, 杨文奎, 田晓林, 侯华. 相场法研究Fe84Cu15Mn1合金富Cu相析出的内磁能作用机理. 物理学报, 2022, 71(8): 080201. doi: 10.7498/aps.71.20212087
    [5] 郭震, 赵宇宏, 孙远洋, 赵宝军, 田晓林, 侯华. 相场法研究Fe-Cu-Mn-Al合金富Cu相析出机制. 物理学报, 2021, 70(8): 086401. doi: 10.7498/aps.70.20201843
    [6] 谷倩倩, 阮莹, 代富平. 微重力下Fe-Al-Nb合金液滴的快速凝固机理及其对显微硬度的影响. 物理学报, 2017, 66(10): 106401. doi: 10.7498/aps.66.106401
    [7] 李蕊, 左小伟, 王恩刚. 时效Ag-7wt.%Cu合金的微观组织、电阻率和硬度. 物理学报, 2017, 66(2): 027401. doi: 10.7498/aps.66.027401
    [8] 郑天祥, 钟云波, 孙宗乾, 王江, 吴秋芳, 冯美龙, 任忠鸣. 电磁复合场对Zn-10 wt%Bi过偏晶合金凝固组织的影响. 物理学报, 2012, 61(23): 238501. doi: 10.7498/aps.61.238501
    [9] 胡卫强, 刘宗德, 王永田, 夏兴祥. 快冷熔覆法原位合成大厚度铁基非晶复合涂层的研究. 物理学报, 2011, 60(2): 027103. doi: 10.7498/aps.60.027103
    [10] 王江, 钟云波, 汪超, 王志强, 任忠鸣, 徐匡迪. 电磁复合场制备匀质Zn-Bi偏晶合金的物理模拟. 物理学报, 2011, 60(7): 076101. doi: 10.7498/aps.60.076101
    [11] 宗亚平, 王明涛, 郭巍. 再结晶和外力场下第二相析出的相场法模拟. 物理学报, 2009, 58(13): 161-S168. doi: 10.7498/aps.58.161
    [12] 刘涛, 李卫. 时效工艺对PtCo合金磁性能的影响. 物理学报, 2009, 58(8): 5773-5777. doi: 10.7498/aps.58.5773
    [13] 刘红, 王西涛, 陈冷. 含Nb微合金钢应变诱导析出的模拟. 物理学报, 2009, 58(13): 151-S155. doi: 10.7498/aps.58.151
    [14] 冯文然, 阎殿然, 何继宁, 陈光良, 顾伟超, 张谷令, 刘赤子, 杨思泽. 反应等离子喷涂纳米TiN涂层的显微硬度及微观结构研究. 物理学报, 2005, 54(5): 2399-2402. doi: 10.7498/aps.54.2399
    [15] 吴汉华, 汪剑波, 龙北玉, 吕宪义, 龙北红, 金曾孙, 白亦真, 毕冬梅. 电流密度对铝合金微弧氧化膜物理化学特性的影响. 物理学报, 2005, 54(12): 5743-5749. doi: 10.7498/aps.54.5743
    [16] 张鹏, 杜云慧, 曾大本. 电磁-机械复合场对合金凝固组织影响的研究. 物理学报, 2002, 51(3): 696-699. doi: 10.7498/aps.51.696
    [17] 柴志刚, 孟繁玲, 邹青. Al-Li合金时效-回归-再时效析出δ′相的行为. 物理学报, 2001, 50(7): 1401-1404. doi: 10.7498/aps.50.1401
    [18] 李宝祥. 稀土五磷酸盐晶体显微硬度的测定. 物理学报, 1989, 38(1): 128-133. doi: 10.7498/aps.38.128
    [19] 蔡其巩, 朱静, 何崇智. 马氏体时效钢的时效结构. 物理学报, 1974, 23(3): 26-41. doi: 10.7498/aps.23.26
    [20] 葛庭燧, 王中光, 黄元士. 不同时效状态的含铜4%的铝合金在疲劳载荷下溶质原子与位错的交互作用. 物理学报, 1965, 21(6): 1242-1252. doi: 10.7498/aps.21.1242
计量
  • 文章访问数:  8487
  • PDF下载量:  505
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-04-21
  • 修回日期:  2012-06-05
  • 刊出日期:  2012-11-05

/

返回文章
返回