搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非晶FexZn1-xO薄膜的结构、磁性和电性能

王锋 潘荣萱 林海容

引用本文:
Citation:

非晶FexZn1-xO薄膜的结构、磁性和电性能

王锋, 潘荣萱, 林海容

Structural, magnetic and electrical properties in FexZn1-xO amorphous films

Wang Feng, Pan Rong-Xuan, Lin Hai-Rong
PDF
导出引用
  • 采用射频共溅射方法制备了FexZn1-xO (x=0.80, 0.86, 0.93)非晶薄膜, 该薄膜具有较强的室温铁磁性, 制备态的Fe0.93Zn0.07O 的饱和磁化强度Ms可达333.29 emu/cm3, 磁性能是各向同性的. 与多晶的FexZn1-xO (x≤ 20%)不同的是样品出现了明显的异常霍尔效应(AHE), 样品均为n型半导体, 载流子浓度约为1019—1020 cm-3. 退火后的样品在低温222 K 下存在着电阻极小值现象. 薄膜的低温电阻导电机理属于自旋依赖的电子变程跃迁机理, 上述实验结果表明高Fe含量的非晶FeZnO体系有作为新型自旋电子学器件材料的可能.
    The FexZn1-xO (x=0.80, 0.86, 0.93)amorphous films were fabricated by RF sputtering method. The films each have a strong ferromagnetism at room temperature. The saturation magnetization Ms can reacl 333.29 emu/cm3 in the as-sputtered Fe0.93Zn0.07O. Magnetism is isotropic. The sample obviously exhibits an anomalous Hall effect, which is different from the polycrystalline FexZn1-xO (x≤ 20%). The samples are of n-type semiconductor, with a carrier concentration of about 1019—1020 cm-3. After being annealed, the samples each present a resistance minimum phenomenon at a low temperature (222 K). The conductive mechanism is of the spin dependent variable range hopping resistance in the low-temperature. The experimental results show that amorphous FeZnO system of high Fe composition is a potential candidate of the new spintronic device materials.
    • 基金项目: 福建省自然科学基金(批准号: 2010J01305,E0510027)、泉州市科技项目计划(批准号: 2009G8 )和福建省高校服务海西建设重点项目(批准号: A100)资助的课题.
    • Funds: Project supported by the Natural Science Foundation of Fujian Province, China (Grant Nos. 2010J01305, E0510027), the Science and Technology Program of Quanzhou, China (Grant No. 2009G8), and the University Service West Coast of Fujian Province, China (Grant No. A100).
    [1]

    Ohno H 1998 Science 281 951

    [2]

    Sato K, Bergqvist L, Kudrnovský J, Dederichs P H, Eriksson O, Turek I, Sanyal B, Bouzerar G, Katayama-Yoshida H, Dinh V A, Fukushima T, Kizaki H, Zeller R 2010 Rev. Mod. Phys. 82 1633

    [3]

    Editorial Staff 2005 Science 309 82

    [4]

    Dietal T, Ohno H, Matsukura F, Cibert J and Ferrand D 2000 Science 287 1019

    [5]

    Zener C 1951 Phys. Rev. 81 440

    [6]

    Sato K, Yoshida H K 2000 Jpn. J. Appl. Phys. 39 L555

    [7]

    Chambers S A 2006 Surf. Sci. Reports 61 345

    [8]

    Pan F, Ding B F, Fa T, Cheng F F, Zhou Sh Q, Yao Sh D 2011 Acta. Phys. Sin. 60 108501 (in Chinese) [潘峰, 丁斌峰, 法涛, 成枫锋, 周生强, 姚淑德 2011 物理学报 60 108501]

    [9]

    Kataoka T, Kobayashi M, Sakamoto Y, Song G S, Fujimori A, Chang F H, Lin H J, Huang D J, Chen C T, Ohkochi T, Takeda Y, Okane T, Saitoh Y, Yamagami H, Tanaka A, Mandal S K, Nath T K, Karmakar D, Dasgupta I 2010 J. Appl. Phys. 107 033718

    [10]

    Yoon S W, Cho S B, We S C, Yoon S, Suh B J 2003 J. Appl. Phys. 93 7879

    [11]

    Shim J H, Hwang T, Lee S, Park J H, Han S J, Jeong Y H 2005 Appl. Phys. Lett. 86 082503

    [12]

    Shinagawa T, Izaki M, Inui H, Murase K, Awakura Y 2005 J. ElectroChem. Soc. 152 G736

    [13]

    Sato K, Yoshida H K 2001 Physica B 308-310 904

    [14]

    Debernardi A, Fanciulli M 2011 Phys. Rev. B 84 024415

    [15]

    Debernardi A, Fanciulli M 2007 Appl. Phys. Lett. 90 212510

    [16]

    Deng B, Guo Zh Y, Sun H Q 2010 Appl. Phys. Lett. 96 172106

    [17]

    Park M S, Min B I 2003 Phys. Rev. B 68 224436

    [18]

    Yan Sh Sh, Mei L M, Chen Y X, Liu G L, Song H Q, Zhang Y P, Tian Y F, Qiao R M 2011 J. Shandong University (Natural Science) 46 81 (in Chinese) [颜世申, 梅良模, 陈延学, 刘国磊, 宋红强, 张云鹏, 田玉峰, 乔瑞敏 2011 山东大学学报(理学版) 46 81]

    [19]

    Liu H J, Yao K, Yang P, Du Y H, He Q, Gu Y L, Li X L, Wang S S, Zhou X T, Wang J 2010 Phys. Rev. B 82 064108

    [20]

    Wang Y X, Wang J, Li H H, Li R P, Guo Y X 2005 Acta. Phys. Sin. 54 5474 (in Chinese) [王雅新, 王劼, 李红红, 李锐鹏, 郭玉献 2005 物理学报 54 5474]

    [21]

    Liu X Ch, Chen Zh Zh, Shi E W, Liao D Q, Zhou K J 2011 Chin. Phys. B 20 037501

    [22]

    Kapplus R, Luttinger J M 1954 Phys. Rev. 95 1154

    [23]

    Lee W L, Watauchi S, Miller V L, Cava R J, Ong N P 2004 Science 303 1647

    [24]

    Philip J, Punnoose A, Kim B I, Reddy K M, Layne S, Holmes J O, Satpati B, LeClair P R, Santos T S, Moodera J S 2006 Nat. Mater. 5 298

    [25]

    Han S J, Song J W, Yang C H, Park S H, Park J H. Jeong Y H, Rhie K W 2002 Appl. Phys. Lett. 81 4212

    [26]

    Wang F, Huang W W, Li Sh Y, Lian A Q, Zhang X T, Cao W 2012 J. Magn. Magn. Mater. for submitted

    [27]

    Kittel C, translated by Xiang J Z, Wu X H 2005 Introduction to Solid State Physics (Beijing: Chemical Industry Press) p132 (in Chinese) [Kittel C 著, 项金钟, 吴兴惠译, 2005 固体物理学导论 (北京: 化学工业出版社) 第132页]

    [28]

    Song C, Zeng F, Geng K W, Liu X J, Pan F, He B, Yan W S 2007 Phys. Rev. B 76 045215

    [29]

    Song C, Zeng F, Shen Y X, Geng K W, Xie Y N, Wu Z Y, Pan F 2006 Phys. Rev. B 73 172412

    [30]

    Coey J M D, Venkatesan M, Fitzgerald C B 2005 Nat. Mater. 4 173

    [31]

    Anderson P W 1958 Phys. Rev. 109 1492

    [32]

    Yan S S, Liu J P, Mei L M, Tian Y F, Song H Q, Chen Y X, Liu G L 2006 J. Phys. Condensed Matter 18 10469

    [33]

    Tian Y F, Yan Sh Sh, Zhang Y P, Song H Q, Ji G, Liu G L, Chen Y X, Mei L M, Liu J P, Altuncevahir B, Chakka V 2006 J. Appl. Phys. 100 103901-1

    [34]

    Huang K, revised by Hang R Q 1988 Solid State Physics (Beijing: Higher Education Press) p315 (in Chinese) [黄昆原著, 韩汝琦改编 1988 固体物理学 (北京: 高等教育出版社)第323页]

    [35]

    Sun N K, Li Y B, Li D, Zhang Q, Du J, Xiong,D K, Zhang W S, Ma S, Liu J J, Zhang Z D 2007 Journal of Alloys and Compounds. 429 29

    [36]

    Zhao B, Kaspar T C, Droubay T C, McCloy J, Bowden M E, Shutthanandan V, Heald S M, Chambers S A 2011 Phys. Rev. B 84 0245325

  • [1]

    Ohno H 1998 Science 281 951

    [2]

    Sato K, Bergqvist L, Kudrnovský J, Dederichs P H, Eriksson O, Turek I, Sanyal B, Bouzerar G, Katayama-Yoshida H, Dinh V A, Fukushima T, Kizaki H, Zeller R 2010 Rev. Mod. Phys. 82 1633

    [3]

    Editorial Staff 2005 Science 309 82

    [4]

    Dietal T, Ohno H, Matsukura F, Cibert J and Ferrand D 2000 Science 287 1019

    [5]

    Zener C 1951 Phys. Rev. 81 440

    [6]

    Sato K, Yoshida H K 2000 Jpn. J. Appl. Phys. 39 L555

    [7]

    Chambers S A 2006 Surf. Sci. Reports 61 345

    [8]

    Pan F, Ding B F, Fa T, Cheng F F, Zhou Sh Q, Yao Sh D 2011 Acta. Phys. Sin. 60 108501 (in Chinese) [潘峰, 丁斌峰, 法涛, 成枫锋, 周生强, 姚淑德 2011 物理学报 60 108501]

    [9]

    Kataoka T, Kobayashi M, Sakamoto Y, Song G S, Fujimori A, Chang F H, Lin H J, Huang D J, Chen C T, Ohkochi T, Takeda Y, Okane T, Saitoh Y, Yamagami H, Tanaka A, Mandal S K, Nath T K, Karmakar D, Dasgupta I 2010 J. Appl. Phys. 107 033718

    [10]

    Yoon S W, Cho S B, We S C, Yoon S, Suh B J 2003 J. Appl. Phys. 93 7879

    [11]

    Shim J H, Hwang T, Lee S, Park J H, Han S J, Jeong Y H 2005 Appl. Phys. Lett. 86 082503

    [12]

    Shinagawa T, Izaki M, Inui H, Murase K, Awakura Y 2005 J. ElectroChem. Soc. 152 G736

    [13]

    Sato K, Yoshida H K 2001 Physica B 308-310 904

    [14]

    Debernardi A, Fanciulli M 2011 Phys. Rev. B 84 024415

    [15]

    Debernardi A, Fanciulli M 2007 Appl. Phys. Lett. 90 212510

    [16]

    Deng B, Guo Zh Y, Sun H Q 2010 Appl. Phys. Lett. 96 172106

    [17]

    Park M S, Min B I 2003 Phys. Rev. B 68 224436

    [18]

    Yan Sh Sh, Mei L M, Chen Y X, Liu G L, Song H Q, Zhang Y P, Tian Y F, Qiao R M 2011 J. Shandong University (Natural Science) 46 81 (in Chinese) [颜世申, 梅良模, 陈延学, 刘国磊, 宋红强, 张云鹏, 田玉峰, 乔瑞敏 2011 山东大学学报(理学版) 46 81]

    [19]

    Liu H J, Yao K, Yang P, Du Y H, He Q, Gu Y L, Li X L, Wang S S, Zhou X T, Wang J 2010 Phys. Rev. B 82 064108

    [20]

    Wang Y X, Wang J, Li H H, Li R P, Guo Y X 2005 Acta. Phys. Sin. 54 5474 (in Chinese) [王雅新, 王劼, 李红红, 李锐鹏, 郭玉献 2005 物理学报 54 5474]

    [21]

    Liu X Ch, Chen Zh Zh, Shi E W, Liao D Q, Zhou K J 2011 Chin. Phys. B 20 037501

    [22]

    Kapplus R, Luttinger J M 1954 Phys. Rev. 95 1154

    [23]

    Lee W L, Watauchi S, Miller V L, Cava R J, Ong N P 2004 Science 303 1647

    [24]

    Philip J, Punnoose A, Kim B I, Reddy K M, Layne S, Holmes J O, Satpati B, LeClair P R, Santos T S, Moodera J S 2006 Nat. Mater. 5 298

    [25]

    Han S J, Song J W, Yang C H, Park S H, Park J H. Jeong Y H, Rhie K W 2002 Appl. Phys. Lett. 81 4212

    [26]

    Wang F, Huang W W, Li Sh Y, Lian A Q, Zhang X T, Cao W 2012 J. Magn. Magn. Mater. for submitted

    [27]

    Kittel C, translated by Xiang J Z, Wu X H 2005 Introduction to Solid State Physics (Beijing: Chemical Industry Press) p132 (in Chinese) [Kittel C 著, 项金钟, 吴兴惠译, 2005 固体物理学导论 (北京: 化学工业出版社) 第132页]

    [28]

    Song C, Zeng F, Geng K W, Liu X J, Pan F, He B, Yan W S 2007 Phys. Rev. B 76 045215

    [29]

    Song C, Zeng F, Shen Y X, Geng K W, Xie Y N, Wu Z Y, Pan F 2006 Phys. Rev. B 73 172412

    [30]

    Coey J M D, Venkatesan M, Fitzgerald C B 2005 Nat. Mater. 4 173

    [31]

    Anderson P W 1958 Phys. Rev. 109 1492

    [32]

    Yan S S, Liu J P, Mei L M, Tian Y F, Song H Q, Chen Y X, Liu G L 2006 J. Phys. Condensed Matter 18 10469

    [33]

    Tian Y F, Yan Sh Sh, Zhang Y P, Song H Q, Ji G, Liu G L, Chen Y X, Mei L M, Liu J P, Altuncevahir B, Chakka V 2006 J. Appl. Phys. 100 103901-1

    [34]

    Huang K, revised by Hang R Q 1988 Solid State Physics (Beijing: Higher Education Press) p315 (in Chinese) [黄昆原著, 韩汝琦改编 1988 固体物理学 (北京: 高等教育出版社)第323页]

    [35]

    Sun N K, Li Y B, Li D, Zhang Q, Du J, Xiong,D K, Zhang W S, Ma S, Liu J J, Zhang Z D 2007 Journal of Alloys and Compounds. 429 29

    [36]

    Zhao B, Kaspar T C, Droubay T C, McCloy J, Bowden M E, Shutthanandan V, Heald S M, Chambers S A 2011 Phys. Rev. B 84 0245325

  • [1] 黄玉昊, 张贵涛, 王如倩, 陈乾, 王金兰. 二维双金属铁磁半导体CrMoI6的电子结构与稳定性. 物理学报, 2021, 70(20): 207301. doi: 10.7498/aps.70.20210949
    [2] 刘璇, 高腾, 解士杰. 有机半导体中极化子运动的同位素效应. 物理学报, 2020, 69(24): 246701. doi: 10.7498/aps.69.20200789
    [3] 陈娜, 张盈祺, 姚可夫. 源于非晶合金的透明磁性半导体. 物理学报, 2017, 66(17): 176113. doi: 10.7498/aps.66.176113
    [4] 姜丽娜, 张玉滨, 董顺乐. 有机自旋器件磁性渗透层中双极化子对自旋极化输运的影响. 物理学报, 2015, 64(14): 147104. doi: 10.7498/aps.64.147104
    [5] 朱亮清, 林铁, 郭少令, 褚君浩. 非简并p型Hg1-xMnxTe单晶(x0.17)的负磁电阻机理研究. 物理学报, 2012, 61(8): 087501. doi: 10.7498/aps.61.087501
    [6] 王志明. GaAs自旋注入及巨霍尔效应的研究. 物理学报, 2011, 60(7): 077203. doi: 10.7498/aps.60.077203
    [7] 刘德, 张红梅, 贾秀敏. 对称抛物势阱磁性隧道结中的自旋输运及磁电阻效应. 物理学报, 2011, 60(1): 017506. doi: 10.7498/aps.60.017506
    [8] 何志刚, 程兴华, 龚敏, 蔡娟露, 石瑞英. 影响磁性pn结自旋极化输运特性的因素. 物理学报, 2010, 59(9): 6521-6526. doi: 10.7498/aps.59.6521
    [9] 汤乃云. GaMnN铁磁共振隧穿二极管自旋电流输运以及极化效应的影响. 物理学报, 2009, 58(5): 3397-3401. doi: 10.7498/aps.58.3397
    [10] 刘启明, 何漩, 干福熹, 钱士雄. 硫系非晶半导体薄膜中的超快光 Kerr效应. 物理学报, 2009, 58(2): 1002-1006. doi: 10.7498/aps.58.1002
    [11] 邹文琴, 路忠林, 王申, 刘圆, 陆路, 郦莉, 张凤鸣, 都有为. Mn和N共掺ZnO稀磁半导体薄膜的研究. 物理学报, 2009, 58(8): 5763-5767. doi: 10.7498/aps.58.5763
    [12] 宋亚舞, 孙 华. 非磁性半导体异常磁电阻效应的有效介质理论. 物理学报, 2008, 57(11): 7178-7184. doi: 10.7498/aps.57.7178
    [13] 刘兴翀, 陆智海, 路忠林, 张凤鸣, 都有为. 多晶Si0.9654Mn0.0346:B薄膜的磁性研究. 物理学报, 2008, 57(11): 7262-7266. doi: 10.7498/aps.57.7262
    [14] 宋红强, 王 勇, 颜世申, 梅良模, 张 泽. 退火对高Co含量Ti1-xCoxO2磁性半导体的影响. 物理学报, 2008, 57(7): 4534-4538. doi: 10.7498/aps.57.4534
    [15] 董正超. 磁性半导体/磁性d波超导结中的自旋极化输运. 物理学报, 2008, 57(9): 5937-5943. doi: 10.7498/aps.57.5937
    [16] 陈卫平, 冯尚申, 焦正宽. Fe15.16Ag84.84金属颗粒膜自旋极化相关的霍尔效应研究. 物理学报, 2003, 52(12): 3176-3180. doi: 10.7498/aps.52.3176
    [17] 李统藏, 刘之景, 王克逸. 自旋极化电子从铁磁金属注入半导体时自旋极化的计算. 物理学报, 2003, 52(11): 2912-2917. doi: 10.7498/aps.52.2912
    [18] 周剑平, 陈诺夫, 宋书林, 柴春林, 杨少延, 刘志凯, 林兰英. Si被注入Gd后的磁性及其整流特性的研究. 物理学报, 2003, 52(6): 1469-1473. doi: 10.7498/aps.52.1469
    [19] 郑振华, 缪容之, 陈羽. 载流子穿越具有双Mot势垒的半导体晶界的输运行为. 物理学报, 1997, 46(2): 375-386. doi: 10.7498/aps.46.375
    [20] 熊诗杰. 非晶态半导体超晶格中载流子的随机输运过程. 物理学报, 1986, 35(8): 1010-1018. doi: 10.7498/aps.35.1010
计量
  • 文章访问数:  5133
  • PDF下载量:  417
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-05-07
  • 修回日期:  2012-07-05
  • 刊出日期:  2012-12-05

非晶FexZn1-xO薄膜的结构、磁性和电性能

  • 1. 泉州师范学院物理与信息工程学院, 泉州 362000
    基金项目: 福建省自然科学基金(批准号: 2010J01305,E0510027)、泉州市科技项目计划(批准号: 2009G8 )和福建省高校服务海西建设重点项目(批准号: A100)资助的课题.

摘要: 采用射频共溅射方法制备了FexZn1-xO (x=0.80, 0.86, 0.93)非晶薄膜, 该薄膜具有较强的室温铁磁性, 制备态的Fe0.93Zn0.07O 的饱和磁化强度Ms可达333.29 emu/cm3, 磁性能是各向同性的. 与多晶的FexZn1-xO (x≤ 20%)不同的是样品出现了明显的异常霍尔效应(AHE), 样品均为n型半导体, 载流子浓度约为1019—1020 cm-3. 退火后的样品在低温222 K 下存在着电阻极小值现象. 薄膜的低温电阻导电机理属于自旋依赖的电子变程跃迁机理, 上述实验结果表明高Fe含量的非晶FeZnO体系有作为新型自旋电子学器件材料的可能.

English Abstract

参考文献 (36)

目录

    /

    返回文章
    返回