搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

异质外延生长中应变对圆形岛形貌稳定性的影响

王静 冯露 郝毅 赵洋 陈振飞

引用本文:
Citation:

异质外延生长中应变对圆形岛形貌稳定性的影响

王静, 冯露, 郝毅, 赵洋, 陈振飞

Strain effect on the morphological instability of a circular island in heteroepitaxy

Wang Jing, Feng Lu, Hao Yi, Zhao Yang, Chen Zhen-Fei
PDF
导出引用
  • 本文利用BCF模型研究了应变对圆形岛形貌稳定性的影响. 通过Gibbs-Thomson关系将应变引入该模型中,讨论了在失配应变、外场应变以及沉积流量、线张力和远场流量等因素共同作用下圆形岛的稳定性,并得到了相应的扰动增长率以及临界沉积流量. 研究结果表明:较大的失配应变和远场流量都能促进岛在生长过程中失稳,而线张力可以抑制岛的失稳. 随着岛的生长,岛的半径越大越趋于稳定,当岛生长到临界半径后,临界沉积流量随着失配应变的增大而增大. 在外场应变存在的情况下,外场负应变对岛的生长起稳定作用并使临界沉积流量减小;相反,正应变促进岛的失稳,且使临界流量增大. 这些结论对在薄膜生长过程中控制原子岛的形貌及其稳定性提供了重要的理论依据.
    In this paper, the strain effect on the morphological instability of the circular island is studied in terms of the BCF (Burton, Cabera, Frank) model. We introduce strains into the BCF model under the Gibbs-Thomson condition and investigate the instability of the island due to the combined effect of the misfit strain, applied strain, deposition flux, line tension, and the far-field flux. Thus, we obtain the perturbation growth rate and the critical deposition flux. Results indicate that the misfit strain and the far-field flux tend to destabilize the growth of the island, and the line tension has a stabilizing effect. In addition, the larger island is more stable during the growth of the island. Up to the critical radius, as the misfit strain increases, the critical flux increases. When taking into account the applied strain, the negatively applied strain stabilizes the growth of the island and decreases the critical flux. These results are almost opposite to the case of the positive strain. This could potentially provide on important theoretical basis for controlling the growth and stability of the films.
    • 基金项目: 国家自然科学基金(批准号:11272231,11072169)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11272231, 11072169).
    [1]

    Capper P, Mauk M 2007 Liquid Phase Epitaxy of Electronic Optical and Optoelectronic Materials (West Sussex: Wiley) p16

    [2]

    Wang X P, Xie F, Shi Q W, Zhao T X 2004 Acta Phys. Sin. 53 2699 (in Chinese) [王晓平, 谢峰, 石勤伟, 赵特秀 2004 物理学报 53 2699]

    [3]

    Brune H, Bromann K, Röder H, Kern K 1995 Phys. Rev. B 52 R14380

    [4]

    Song Y X, Yu Z Y, Liu Y M 2008 Acta Phys. Sin. 57 2399 (in Chinese) [宋禹忻, 俞重远, 刘玉敏 2008 物理学报 57 2399]

    [5]

    Ling P, Kok-Keong L, Joan M R, Elizabeth C D 2005 Nano. Lett. 5 1081

    [6]

    Maggie X, Michael C, Judy L H 2007 Semicond. Sci. Technol 22 55

    [7]

    Zhang B C, Zhou Xun, Luo Z J, Guo X, Ding Z 2012 Chin. Phys. B 21 048101

    [8]

    Liu Z L, Zhang X F, Yao K L, Wei H L, Huang Y M 2004 Chin. Phys. Soc. 13 2115

    [9]

    Wu F M, Lu H J, Wu Z Q 2006 Chin. Phys. Soc. 15 0807

    [10]

    Qiu J H, Ding J N, Yuan N Y, Wang X Q 2012 Chin. Phys. B 21 097701

    [11]

    Jou H J, Leo P H, Lowengrub J S 1997 J. Comput. Phys. 131 109

    [12]

    Chen C, Chen Z, Zhang J, Yang T 2012 Acta Phys. Sin. 61 108103 (in Chinese) [陈成, 陈铮, 张静, 杨涛 2012 物理学报 61 108103]

    [13]

    Mullins W, Sekerka R F 1963 J. Appl. Phys. 34 323

    [14]

    Bales G S, Zangwill A 1997 Phys. Rev. B 55 R1973

    [15]

    Bales G S, Chrzan D C 1994 Phys. Rev. B 50 6057

    [16]

    Shao Q Y, Fang R C, Zhu K G, Liao Y, Xue Z Q 2001 Chin. Phys. Lett. 18 1135

    [17]

    Shao Q Y, Zhang J 2011 Chin. Phys. B 20 086803

    [18]

    Colin J 2004 Acta Mater. 52 4985

    [19]

    Colin J 2005 Phys. Rev. B 71 165403

    [20]

    Colin J 2007 Int. J. Solids Struct. 44 3218

    [21]

    Burton W, Cabrera N, Frank F 1951 Philos. Trans. R. Soc. Lond. Ser. A 243 299

    [22]

    Bales G S, Zangwill A 1990 Phys. Rev. B 41 5500

    [23]

    Caflisch R E, Li B 2003 Multiscale Model. Simul. 1 150

    [24]

    Li B, Rätz A, Voigt A 2004 Phys. D 198 231

    [25]

    Hu Z Z, Li S W, Lowengrub J S 2007 Phys. D 233 151

    [26]

    Xu Z L, Wu Y Z 1964 Theory of elasticity (Beijing: Higher Education Press) p122 (in Chinese) [徐芝纶, 吴永祯 1964 弹性理论 (北京: 高等教育出版社) 第122页]

    [27]

    Leo P H, Sekerka R H 1989 Acta Metall 37 3119

  • [1]

    Capper P, Mauk M 2007 Liquid Phase Epitaxy of Electronic Optical and Optoelectronic Materials (West Sussex: Wiley) p16

    [2]

    Wang X P, Xie F, Shi Q W, Zhao T X 2004 Acta Phys. Sin. 53 2699 (in Chinese) [王晓平, 谢峰, 石勤伟, 赵特秀 2004 物理学报 53 2699]

    [3]

    Brune H, Bromann K, Röder H, Kern K 1995 Phys. Rev. B 52 R14380

    [4]

    Song Y X, Yu Z Y, Liu Y M 2008 Acta Phys. Sin. 57 2399 (in Chinese) [宋禹忻, 俞重远, 刘玉敏 2008 物理学报 57 2399]

    [5]

    Ling P, Kok-Keong L, Joan M R, Elizabeth C D 2005 Nano. Lett. 5 1081

    [6]

    Maggie X, Michael C, Judy L H 2007 Semicond. Sci. Technol 22 55

    [7]

    Zhang B C, Zhou Xun, Luo Z J, Guo X, Ding Z 2012 Chin. Phys. B 21 048101

    [8]

    Liu Z L, Zhang X F, Yao K L, Wei H L, Huang Y M 2004 Chin. Phys. Soc. 13 2115

    [9]

    Wu F M, Lu H J, Wu Z Q 2006 Chin. Phys. Soc. 15 0807

    [10]

    Qiu J H, Ding J N, Yuan N Y, Wang X Q 2012 Chin. Phys. B 21 097701

    [11]

    Jou H J, Leo P H, Lowengrub J S 1997 J. Comput. Phys. 131 109

    [12]

    Chen C, Chen Z, Zhang J, Yang T 2012 Acta Phys. Sin. 61 108103 (in Chinese) [陈成, 陈铮, 张静, 杨涛 2012 物理学报 61 108103]

    [13]

    Mullins W, Sekerka R F 1963 J. Appl. Phys. 34 323

    [14]

    Bales G S, Zangwill A 1997 Phys. Rev. B 55 R1973

    [15]

    Bales G S, Chrzan D C 1994 Phys. Rev. B 50 6057

    [16]

    Shao Q Y, Fang R C, Zhu K G, Liao Y, Xue Z Q 2001 Chin. Phys. Lett. 18 1135

    [17]

    Shao Q Y, Zhang J 2011 Chin. Phys. B 20 086803

    [18]

    Colin J 2004 Acta Mater. 52 4985

    [19]

    Colin J 2005 Phys. Rev. B 71 165403

    [20]

    Colin J 2007 Int. J. Solids Struct. 44 3218

    [21]

    Burton W, Cabrera N, Frank F 1951 Philos. Trans. R. Soc. Lond. Ser. A 243 299

    [22]

    Bales G S, Zangwill A 1990 Phys. Rev. B 41 5500

    [23]

    Caflisch R E, Li B 2003 Multiscale Model. Simul. 1 150

    [24]

    Li B, Rätz A, Voigt A 2004 Phys. D 198 231

    [25]

    Hu Z Z, Li S W, Lowengrub J S 2007 Phys. D 233 151

    [26]

    Xu Z L, Wu Y Z 1964 Theory of elasticity (Beijing: Higher Education Press) p122 (in Chinese) [徐芝纶, 吴永祯 1964 弹性理论 (北京: 高等教育出版社) 第122页]

    [27]

    Leo P H, Sekerka R H 1989 Acta Metall 37 3119

计量
  • 文章访问数:  1670
  • PDF下载量:  418
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-17
  • 修回日期:  2013-08-31
  • 刊出日期:  2013-12-05

异质外延生长中应变对圆形岛形貌稳定性的影响

  • 1. 天津市现代工程力学重点实验室, 天津 300072; 天津大学机械学院力学系, 天津 300072
    基金项目: 

    国家自然科学基金(批准号:11272231,11072169)资助的课题.

摘要: 本文利用BCF模型研究了应变对圆形岛形貌稳定性的影响. 通过Gibbs-Thomson关系将应变引入该模型中,讨论了在失配应变、外场应变以及沉积流量、线张力和远场流量等因素共同作用下圆形岛的稳定性,并得到了相应的扰动增长率以及临界沉积流量. 研究结果表明:较大的失配应变和远场流量都能促进岛在生长过程中失稳,而线张力可以抑制岛的失稳. 随着岛的生长,岛的半径越大越趋于稳定,当岛生长到临界半径后,临界沉积流量随着失配应变的增大而增大. 在外场应变存在的情况下,外场负应变对岛的生长起稳定作用并使临界沉积流量减小;相反,正应变促进岛的失稳,且使临界流量增大. 这些结论对在薄膜生长过程中控制原子岛的形貌及其稳定性提供了重要的理论依据.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回