-
目前,虽然Zn1-xTMxO1-yNy(TM=Al,Ga,In)p 型掺杂的理论计算研究已有报道,但是,掺杂均是随机的,没有考虑ZnO的非对称性进行择优位向掺杂. 因此,本研究采用基于密度泛函理论框架下的第一性原理平面波超软赝势方法,构建TM:N=1:2比例择优位向共掺,共设六种不同的Zn1-xTMxO1-yNy(TM=Al,Ga,In. x=0.03125,y=0.0625)超胞模型,并分别进行几何结构优化、态密度分布和能带结构分布的计算. 结果表明,重掺杂条件下,择优位向共掺后,同类择优位向共掺的体系中,TM-N 沿c轴方向成键体系的电导率大于垂直于c轴方向成键体系的电导率. 不同类TM-N沿c轴方向成键共掺的体系中,In-N沿c轴方向成键共掺时ZnO的电导率最强,电离能最小,Bohr半径最大,In-N沿c轴方向成键共掺对ZnO p型导电更有利. 因此,TM:N=1:2比例择优位向共掺,对设计和制备导电性能更强的ZnO功能材料具有一定的理论指导作用.
-
关键词:
- (Al,Ga,In)和2N重共掺ZnO /
- 择优位向 /
- 导电性能 /
- 第一性原理
At present, although there is some studies about the theoretical calculation studies of Zn1-xTMxO1-yNy(TM=Al, Ga, In) p-type doped have been reported. But, they are random doping and without considering the asymmetry of ZnO preferred orientation to doping. Therefore, Six different supercell models Zn1-xTMxO1-yNy (TM = Al, Ga, In. x = 0.0625, y = 0.125) which proportion is TM:N = 1:2 and preferred orientation to co-doped have been constructed based on the first-principles plane wave ultra-soft pseudo potential method of density function theory, in this study.Then calculate the geometric optimization, State density distribution and Band structure distribution for all models, respectively. Results indicate that with the condition of heavily doped and preferred orientation to co-doped, in the same kind of preferred orientation co-doping systems, the electrical conductivity of the system which TM-N bond along the c-axis direction is greater than it perpendicular to the c-axis. In the different kinds co-doping ZnO systems which TM-N bond along the c-axis direction, The co-doping systems of In-N bond along the c-axis direction has the strongest conductivity and the lowest ionization energy and the largest Bohr radius. It is more favorable for electrical conductivity of p-type ZnO. This study can be a theoretical guidance for improve the electrical conductivity of which design and preparation TM:N=1:2 ratio preferred orientation co-doping ZnO systems.-
Keywords:
- (Al,Ga,In)and 2N heavy co-doped ZnO /
- preferred orientation /
- electrical conductivity /
- first-principles
[1] Bae S Y, Na C W, Kang J H, Park J 2005 J. Phys. Chem. B 109 2526
[2] Bhuvana K P, Elanchezhiyan J, Gopalakrishnan N, Balasubramanian T 2008 Appl. Surf. Sci. 255 2026
[3] Zhang C Y, Li X M, Bian J M, Yu W D, Gao X D 2004 Solid State Commun 132 75
[4] Lu J G, Ye Z Z, Zhuge F, Zeng Y J, Zhao B H, Zhu L P 2004 Appl. Phys. Lett. 85 3134
[5] Xu Y, Wang J, Dou Y B 2010 J. Maters. Eng. (11) 11 (in Chinese) [许莹, 王娟, 窦玉博 2010 材料工程 (11) 11]
[6] Lv J G, Ye Z Z, Zhu G F, Zeng Y J, Zhao B H, Zhu L P 2005 Journal of Semiconductors 26 730 (in Chinese)[吕建国, 叶志镇, 诸葛飞, 曾昱嘉, 赵炳辉, 朱丽萍 2005 半导体学报 26 730]
[7] Ye Z Z, Qian Q, Yuan G D, Zhao B H, Ma D W 2005 J. Cryst. Growth 274 178
[8] Joseph M, Tabata H, Kawai T 1999 Jpn. App. Phys. 38 L 1205
[9] Komatsu M, Ohashi N, Sakaguchi I, Hishita S, Haneda H 2002 Appl. Surf. Sci. 189 349
[10] Kumar M, Kim T H, Kim S S, Lee B T 2006 App. Phys. Lett. 89 112103
[11] Zhao J L, Li X M, Krtschil A, Krost A, Yu W D, Zhang Y W, Gu Y F, Gao X D 2007 Appl. Phys. Lett. 90 062118
[12] Bian J M, Li X M, Chen L D, Yao Q 2004 Chem. Phys. Lett. 393 256
[13] Chen L L, Lu J G, Ye Z Z, Lin Y M, Zhao B H, Ye Y M, Li J S, Zhu L P 2005 App. Phys. Lett. 87 252106
[14] Yuan N Y, Fan L N, Li J H, Wang X Q 2007 Appl. Surf. Sci 253 4990
[15] Yamamoto T, Yoshida H K 1999 Jpn. J. Appl. Phys. 38 L166
[16] Wang L G, Zunger A 2003 Phys. Rev. Lett. 25 256401
[17] Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I J, Refson K, Payne M C 2005 Z. Kristallogr 220 567
[18] Mapa M, Sivaranjani K, Bhange D S, Saha B, Chakraborty P, Viswanath A K, Gopinath C S 2010 Chem. Mater 22 565
[19] Mapa M, Sivaranjani K, Bhange D S, Saha B, Chakraborty P, Viswanath A K, Gopinath C S 2010 Chem. Mater 22 565
[20] Roth A P, Webb J B, Williams D F 1981 Solid State Commun. 39 1269
[21] Lu E K, Zhu B S, Luo J S 1998 Semiconductor Physics(Xi an: Xi an Jiao tong University Press)p77-79 (in Chinese)[刘恩科, 朱秉升, 罗晋生1998半导体物理(西安: 西安交通大学出版社)第77–79页]
[22] Pires R G, Dickstein R M, Titcomb S L 1990 Cryogenics 30 1064
[23] Ye Z Z, Lv J G, Zhang Y Z, He H P 2009 Zinc oxide doped semiconductor material technology and application (Zhejiang: Zhejiang University Press) p6 (in Chinese) [叶志镇, 吕建国, 张银珠, 何海平 2009 氧化锌半导体材料掺杂技术与应用(浙江: 浙江大学出版社)第6页]
[24] Zhao H F, Cao Q X, Li J T 2008 Acta Phys. Sin. 57 5828
[25] Schleife A, Fuchs F, Furthm ller J 2006 J. phys Rev. B 73 245212
[26] Erhart P, Albe K, Klein A 2006 Phys. Rev. B 73 205203
[27] Zhou C, Kang J 2004 13th Proceedings of the International Conference on Semiconducting and Insulating Materials, Beijing China, September 20-25, 2004 pp81-84
[28] Pearton S J, Norton D P, Ip K, Heo Y W, Steiner T 2004 J. Vac. Sci. Technol. B 22 932
[29] Li P, Deng S H, Zhang L, Yu J Y, Liu G H 2010 Chin. Phys. B 19 117102
-
[1] Bae S Y, Na C W, Kang J H, Park J 2005 J. Phys. Chem. B 109 2526
[2] Bhuvana K P, Elanchezhiyan J, Gopalakrishnan N, Balasubramanian T 2008 Appl. Surf. Sci. 255 2026
[3] Zhang C Y, Li X M, Bian J M, Yu W D, Gao X D 2004 Solid State Commun 132 75
[4] Lu J G, Ye Z Z, Zhuge F, Zeng Y J, Zhao B H, Zhu L P 2004 Appl. Phys. Lett. 85 3134
[5] Xu Y, Wang J, Dou Y B 2010 J. Maters. Eng. (11) 11 (in Chinese) [许莹, 王娟, 窦玉博 2010 材料工程 (11) 11]
[6] Lv J G, Ye Z Z, Zhu G F, Zeng Y J, Zhao B H, Zhu L P 2005 Journal of Semiconductors 26 730 (in Chinese)[吕建国, 叶志镇, 诸葛飞, 曾昱嘉, 赵炳辉, 朱丽萍 2005 半导体学报 26 730]
[7] Ye Z Z, Qian Q, Yuan G D, Zhao B H, Ma D W 2005 J. Cryst. Growth 274 178
[8] Joseph M, Tabata H, Kawai T 1999 Jpn. App. Phys. 38 L 1205
[9] Komatsu M, Ohashi N, Sakaguchi I, Hishita S, Haneda H 2002 Appl. Surf. Sci. 189 349
[10] Kumar M, Kim T H, Kim S S, Lee B T 2006 App. Phys. Lett. 89 112103
[11] Zhao J L, Li X M, Krtschil A, Krost A, Yu W D, Zhang Y W, Gu Y F, Gao X D 2007 Appl. Phys. Lett. 90 062118
[12] Bian J M, Li X M, Chen L D, Yao Q 2004 Chem. Phys. Lett. 393 256
[13] Chen L L, Lu J G, Ye Z Z, Lin Y M, Zhao B H, Ye Y M, Li J S, Zhu L P 2005 App. Phys. Lett. 87 252106
[14] Yuan N Y, Fan L N, Li J H, Wang X Q 2007 Appl. Surf. Sci 253 4990
[15] Yamamoto T, Yoshida H K 1999 Jpn. J. Appl. Phys. 38 L166
[16] Wang L G, Zunger A 2003 Phys. Rev. Lett. 25 256401
[17] Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I J, Refson K, Payne M C 2005 Z. Kristallogr 220 567
[18] Mapa M, Sivaranjani K, Bhange D S, Saha B, Chakraborty P, Viswanath A K, Gopinath C S 2010 Chem. Mater 22 565
[19] Mapa M, Sivaranjani K, Bhange D S, Saha B, Chakraborty P, Viswanath A K, Gopinath C S 2010 Chem. Mater 22 565
[20] Roth A P, Webb J B, Williams D F 1981 Solid State Commun. 39 1269
[21] Lu E K, Zhu B S, Luo J S 1998 Semiconductor Physics(Xi an: Xi an Jiao tong University Press)p77-79 (in Chinese)[刘恩科, 朱秉升, 罗晋生1998半导体物理(西安: 西安交通大学出版社)第77–79页]
[22] Pires R G, Dickstein R M, Titcomb S L 1990 Cryogenics 30 1064
[23] Ye Z Z, Lv J G, Zhang Y Z, He H P 2009 Zinc oxide doped semiconductor material technology and application (Zhejiang: Zhejiang University Press) p6 (in Chinese) [叶志镇, 吕建国, 张银珠, 何海平 2009 氧化锌半导体材料掺杂技术与应用(浙江: 浙江大学出版社)第6页]
[24] Zhao H F, Cao Q X, Li J T 2008 Acta Phys. Sin. 57 5828
[25] Schleife A, Fuchs F, Furthm ller J 2006 J. phys Rev. B 73 245212
[26] Erhart P, Albe K, Klein A 2006 Phys. Rev. B 73 205203
[27] Zhou C, Kang J 2004 13th Proceedings of the International Conference on Semiconducting and Insulating Materials, Beijing China, September 20-25, 2004 pp81-84
[28] Pearton S J, Norton D P, Ip K, Heo Y W, Steiner T 2004 J. Vac. Sci. Technol. B 22 932
[29] Li P, Deng S H, Zhang L, Yu J Y, Liu G H 2010 Chin. Phys. B 19 117102
计量
- 文章访问数: 5839
- PDF下载量: 508
- 被引次数: 0