搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

(Al, Ga, In)和2N择优位向重共掺对ZnO导电性能影响的研究

侯清玉 刘全龙 赵春旺 赵二俊

引用本文:
Citation:

(Al, Ga, In)和2N择优位向重共掺对ZnO导电性能影响的研究

侯清玉, 刘全龙, 赵春旺, 赵二俊

Impact of (Al, Ga, In) and 2N preferred orientation heavy co-doping on conducting property of ZnO

Hou Qing-Yu, Liu Quan-Long, Zhao Chun-Wang, Zhao Er-Jun
PDF
导出引用
  • 目前,虽然Zn1-xTMxO1-yNy(TM=Al,Ga,In)p 型掺杂的理论计算研究已有报道,但是,掺杂均是随机的,没有考虑ZnO的非对称性进行择优位向掺杂. 因此,本研究采用基于密度泛函理论框架下的第一性原理平面波超软赝势方法,构建TM:N=1:2比例择优位向共掺,共设六种不同的Zn1-xTMxO1-yNy(TM=Al,Ga,In. x=0.03125,y=0.0625)超胞模型,并分别进行几何结构优化、态密度分布和能带结构分布的计算. 结果表明,重掺杂条件下,择优位向共掺后,同类择优位向共掺的体系中,TM-N 沿c轴方向成键体系的电导率大于垂直于c轴方向成键体系的电导率. 不同类TM-N沿c轴方向成键共掺的体系中,In-N沿c轴方向成键共掺时ZnO的电导率最强,电离能最小,Bohr半径最大,In-N沿c轴方向成键共掺对ZnO p型导电更有利. 因此,TM:N=1:2比例择优位向共掺,对设计和制备导电性能更强的ZnO功能材料具有一定的理论指导作用.
    At present, although there is some studies about the theoretical calculation studies of Zn1-xTMxO1-yNy(TM=Al, Ga, In) p-type doped have been reported. But, they are random doping and without considering the asymmetry of ZnO preferred orientation to doping. Therefore, Six different supercell models Zn1-xTMxO1-yNy (TM = Al, Ga, In. x = 0.0625, y = 0.125) which proportion is TM:N = 1:2 and preferred orientation to co-doped have been constructed based on the first-principles plane wave ultra-soft pseudo potential method of density function theory, in this study.Then calculate the geometric optimization, State density distribution and Band structure distribution for all models, respectively. Results indicate that with the condition of heavily doped and preferred orientation to co-doped, in the same kind of preferred orientation co-doping systems, the electrical conductivity of the system which TM-N bond along the c-axis direction is greater than it perpendicular to the c-axis. In the different kinds co-doping ZnO systems which TM-N bond along the c-axis direction, The co-doping systems of In-N bond along the c-axis direction has the strongest conductivity and the lowest ionization energy and the largest Bohr radius. It is more favorable for electrical conductivity of p-type ZnO. This study can be a theoretical guidance for improve the electrical conductivity of which design and preparation TM:N=1:2 ratio preferred orientation co-doping ZnO systems.
    • 基金项目: 国家自然科学基金(批准号:61366008,51261017)、教育部春晖计划和内蒙古自治区高等学校科学研究项目(批准号:NJZZ13099)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61366008, 51261017), the Ministry of Education Spring Sunshine Plan Funding, and the CollegeScience Research Projectof Inner Mongolia Autonomous Region (Grant No. NJZZ13099).
    [1]

    Bae S Y, Na C W, Kang J H, Park J 2005 J. Phys. Chem. B 109 2526

    [2]

    Bhuvana K P, Elanchezhiyan J, Gopalakrishnan N, Balasubramanian T 2008 Appl. Surf. Sci. 255 2026

    [3]

    Zhang C Y, Li X M, Bian J M, Yu W D, Gao X D 2004 Solid State Commun 132 75

    [4]

    Lu J G, Ye Z Z, Zhuge F, Zeng Y J, Zhao B H, Zhu L P 2004 Appl. Phys. Lett. 85 3134

    [5]

    Xu Y, Wang J, Dou Y B 2010 J. Maters. Eng. (11) 11 (in Chinese) [许莹, 王娟, 窦玉博 2010 材料工程 (11) 11]

    [6]

    Lv J G, Ye Z Z, Zhu G F, Zeng Y J, Zhao B H, Zhu L P 2005 Journal of Semiconductors 26 730 (in Chinese)[吕建国, 叶志镇, 诸葛飞, 曾昱嘉, 赵炳辉, 朱丽萍 2005 半导体学报 26 730]

    [7]

    Ye Z Z, Qian Q, Yuan G D, Zhao B H, Ma D W 2005 J. Cryst. Growth 274 178

    [8]

    Joseph M, Tabata H, Kawai T 1999 Jpn. App. Phys. 38 L 1205

    [9]

    Komatsu M, Ohashi N, Sakaguchi I, Hishita S, Haneda H 2002 Appl. Surf. Sci. 189 349

    [10]

    Kumar M, Kim T H, Kim S S, Lee B T 2006 App. Phys. Lett. 89 112103

    [11]

    Zhao J L, Li X M, Krtschil A, Krost A, Yu W D, Zhang Y W, Gu Y F, Gao X D 2007 Appl. Phys. Lett. 90 062118

    [12]

    Bian J M, Li X M, Chen L D, Yao Q 2004 Chem. Phys. Lett. 393 256

    [13]

    Chen L L, Lu J G, Ye Z Z, Lin Y M, Zhao B H, Ye Y M, Li J S, Zhu L P 2005 App. Phys. Lett. 87 252106

    [14]

    Yuan N Y, Fan L N, Li J H, Wang X Q 2007 Appl. Surf. Sci 253 4990

    [15]

    Yamamoto T, Yoshida H K 1999 Jpn. J. Appl. Phys. 38 L166

    [16]

    Wang L G, Zunger A 2003 Phys. Rev. Lett. 25 256401

    [17]

    Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I J, Refson K, Payne M C 2005 Z. Kristallogr 220 567

    [18]

    Mapa M, Sivaranjani K, Bhange D S, Saha B, Chakraborty P, Viswanath A K, Gopinath C S 2010 Chem. Mater 22 565

    [19]

    Mapa M, Sivaranjani K, Bhange D S, Saha B, Chakraborty P, Viswanath A K, Gopinath C S 2010 Chem. Mater 22 565

    [20]

    Roth A P, Webb J B, Williams D F 1981 Solid State Commun. 39 1269

    [21]

    Lu E K, Zhu B S, Luo J S 1998 Semiconductor Physics(Xi an: Xi an Jiao tong University Press)p77-79 (in Chinese)[刘恩科, 朱秉升, 罗晋生1998半导体物理(西安: 西安交通大学出版社)第77–79页]

    [22]

    Pires R G, Dickstein R M, Titcomb S L 1990 Cryogenics 30 1064

    [23]

    Ye Z Z, Lv J G, Zhang Y Z, He H P 2009 Zinc oxide doped semiconductor material technology and application (Zhejiang: Zhejiang University Press) p6 (in Chinese) [叶志镇, 吕建国, 张银珠, 何海平 2009 氧化锌半导体材料掺杂技术与应用(浙江: 浙江大学出版社)第6页]

    [24]

    Zhao H F, Cao Q X, Li J T 2008 Acta Phys. Sin. 57 5828

    [25]

    Schleife A, Fuchs F, Furthm ller J 2006 J. phys Rev. B 73 245212

    [26]

    Erhart P, Albe K, Klein A 2006 Phys. Rev. B 73 205203

    [27]

    Zhou C, Kang J 2004 13th Proceedings of the International Conference on Semiconducting and Insulating Materials, Beijing China, September 20-25, 2004 pp81-84

    [28]

    Pearton S J, Norton D P, Ip K, Heo Y W, Steiner T 2004 J. Vac. Sci. Technol. B 22 932

    [29]

    Li P, Deng S H, Zhang L, Yu J Y, Liu G H 2010 Chin. Phys. B 19 117102

  • [1]

    Bae S Y, Na C W, Kang J H, Park J 2005 J. Phys. Chem. B 109 2526

    [2]

    Bhuvana K P, Elanchezhiyan J, Gopalakrishnan N, Balasubramanian T 2008 Appl. Surf. Sci. 255 2026

    [3]

    Zhang C Y, Li X M, Bian J M, Yu W D, Gao X D 2004 Solid State Commun 132 75

    [4]

    Lu J G, Ye Z Z, Zhuge F, Zeng Y J, Zhao B H, Zhu L P 2004 Appl. Phys. Lett. 85 3134

    [5]

    Xu Y, Wang J, Dou Y B 2010 J. Maters. Eng. (11) 11 (in Chinese) [许莹, 王娟, 窦玉博 2010 材料工程 (11) 11]

    [6]

    Lv J G, Ye Z Z, Zhu G F, Zeng Y J, Zhao B H, Zhu L P 2005 Journal of Semiconductors 26 730 (in Chinese)[吕建国, 叶志镇, 诸葛飞, 曾昱嘉, 赵炳辉, 朱丽萍 2005 半导体学报 26 730]

    [7]

    Ye Z Z, Qian Q, Yuan G D, Zhao B H, Ma D W 2005 J. Cryst. Growth 274 178

    [8]

    Joseph M, Tabata H, Kawai T 1999 Jpn. App. Phys. 38 L 1205

    [9]

    Komatsu M, Ohashi N, Sakaguchi I, Hishita S, Haneda H 2002 Appl. Surf. Sci. 189 349

    [10]

    Kumar M, Kim T H, Kim S S, Lee B T 2006 App. Phys. Lett. 89 112103

    [11]

    Zhao J L, Li X M, Krtschil A, Krost A, Yu W D, Zhang Y W, Gu Y F, Gao X D 2007 Appl. Phys. Lett. 90 062118

    [12]

    Bian J M, Li X M, Chen L D, Yao Q 2004 Chem. Phys. Lett. 393 256

    [13]

    Chen L L, Lu J G, Ye Z Z, Lin Y M, Zhao B H, Ye Y M, Li J S, Zhu L P 2005 App. Phys. Lett. 87 252106

    [14]

    Yuan N Y, Fan L N, Li J H, Wang X Q 2007 Appl. Surf. Sci 253 4990

    [15]

    Yamamoto T, Yoshida H K 1999 Jpn. J. Appl. Phys. 38 L166

    [16]

    Wang L G, Zunger A 2003 Phys. Rev. Lett. 25 256401

    [17]

    Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I J, Refson K, Payne M C 2005 Z. Kristallogr 220 567

    [18]

    Mapa M, Sivaranjani K, Bhange D S, Saha B, Chakraborty P, Viswanath A K, Gopinath C S 2010 Chem. Mater 22 565

    [19]

    Mapa M, Sivaranjani K, Bhange D S, Saha B, Chakraborty P, Viswanath A K, Gopinath C S 2010 Chem. Mater 22 565

    [20]

    Roth A P, Webb J B, Williams D F 1981 Solid State Commun. 39 1269

    [21]

    Lu E K, Zhu B S, Luo J S 1998 Semiconductor Physics(Xi an: Xi an Jiao tong University Press)p77-79 (in Chinese)[刘恩科, 朱秉升, 罗晋生1998半导体物理(西安: 西安交通大学出版社)第77–79页]

    [22]

    Pires R G, Dickstein R M, Titcomb S L 1990 Cryogenics 30 1064

    [23]

    Ye Z Z, Lv J G, Zhang Y Z, He H P 2009 Zinc oxide doped semiconductor material technology and application (Zhejiang: Zhejiang University Press) p6 (in Chinese) [叶志镇, 吕建国, 张银珠, 何海平 2009 氧化锌半导体材料掺杂技术与应用(浙江: 浙江大学出版社)第6页]

    [24]

    Zhao H F, Cao Q X, Li J T 2008 Acta Phys. Sin. 57 5828

    [25]

    Schleife A, Fuchs F, Furthm ller J 2006 J. phys Rev. B 73 245212

    [26]

    Erhart P, Albe K, Klein A 2006 Phys. Rev. B 73 205203

    [27]

    Zhou C, Kang J 2004 13th Proceedings of the International Conference on Semiconducting and Insulating Materials, Beijing China, September 20-25, 2004 pp81-84

    [28]

    Pearton S J, Norton D P, Ip K, Heo Y W, Steiner T 2004 J. Vac. Sci. Technol. B 22 932

    [29]

    Li P, Deng S H, Zhang L, Yu J Y, Liu G H 2010 Chin. Phys. B 19 117102

  • [1] 孙士阳, 迟中波, 徐平平, 安泽宇, 张俊皓, 谭心, 任元. 金刚石(111)/Al界面形成及性能的第一性原理研究. 物理学报, 2021, 70(18): 188101. doi: 10.7498/aps.70.20210572
    [2] 秦京运, 舒群威, 袁艺, 仇伟, 肖立华, 彭平, 卢国松. Tl0.33WO3电子结构和太阳辐射屏蔽性能第一性原理研究. 物理学报, 2020, 69(4): 047102. doi: 10.7498/aps.69.20191577
    [3] 付正鸿, 李婷, 单美乐, 郭糠, 苟国庆. H对Mg2Si力学性能影响的第一性原理研究. 物理学报, 2019, 68(17): 177102. doi: 10.7498/aps.68.20190368
    [4] 代月花, 潘志勇, 陈真, 王菲菲, 李宁, 金波, 李晓风. 基于HfO2的阻变存储器中Ag导电细丝方向和浓度的第一性原理研究. 物理学报, 2016, 65(7): 073101. doi: 10.7498/aps.65.073101
    [5] 曲灵丰, 侯清玉, 许镇潮, 赵春旺. Ti掺杂ZnO光电性能的第一性原理研究. 物理学报, 2016, 65(15): 157201. doi: 10.7498/aps.65.157201
    [6] 侯清玉, 曲灵丰, 赵春旺. Al-2N掺杂量对ZnO光电性能的影响. 物理学报, 2016, 65(5): 057401. doi: 10.7498/aps.65.057401
    [7] 沈杰, 魏宾, 周静, Shen Shirley Zhiqi, 薛广杰, 刘韩星, 陈文. Ba(Mg1/3Nb2/3)O3电子结构第一性原理计算及光学性能研究. 物理学报, 2015, 64(21): 217801. doi: 10.7498/aps.64.217801
    [8] 嘉明珍, 王红艳, 陈元正, 马存良, 王辉. Al, Fe, Mg掺杂Li2MnSiO4的电子结构和电化学性能的第一性原理研究. 物理学报, 2015, 64(8): 087101. doi: 10.7498/aps.64.087101
    [9] 侯清玉, 乌云, 赵春旺. In-2N高共掺位向对ZnO(GGA+U)导电性能影响的研究. 物理学报, 2014, 63(13): 137201. doi: 10.7498/aps.63.137201
    [10] 侯清玉, 乌云格日乐, 赵春旺. 高氧空位浓度对金红石TiO2导电性能影响的第一性原理研究. 物理学报, 2013, 62(16): 167201. doi: 10.7498/aps.62.167201
    [11] 黄有林, 侯育花, 赵宇军, 刘仲武, 曾德长, 马胜灿. 应变对钴铁氧体电子结构和磁性能影响的第一性原理研究. 物理学报, 2013, 62(16): 167502. doi: 10.7498/aps.62.167502
    [12] 侯清玉, 董红英, 马文, 赵春旺. Zn1-xTMxO (TM=Al, Ga, In)导电性能的模拟计算. 物理学报, 2013, 62(15): 157102. doi: 10.7498/aps.62.157102
    [13] 侯清玉, 乌云, 赵春旺. 重氧空位对金红石型和锐钛矿型TiO2导电性能影响的模拟计算. 物理学报, 2013, 62(23): 237101. doi: 10.7498/aps.62.237101
    [14] 李智敏, 施建章, 卫晓黑, 李培咸, 黄云霞, 李桂芳, 郝跃. 掺铝3C-SiC电子结构的第一性原理计算及其微波介电性能. 物理学报, 2012, 61(23): 237103. doi: 10.7498/aps.61.237103
    [15] 侯清玉, 马文, 迎春. Ga/N高共掺浓度对ZnO导电性能和红移影响的第一性原理研究. 物理学报, 2012, 61(1): 017103. doi: 10.7498/aps.61.017103
    [16] 侯清玉, 赵春旺, 李继军, 王钢. Al高掺杂浓度对ZnO导电性能影响的第一性原理研究. 物理学报, 2011, 60(4): 047104. doi: 10.7498/aps.60.047104
    [17] 侯清玉, 赵春旺, 金永军, 关玉琴, 林琳, 李继军. ZnO高掺杂Ga的浓度对导电性能和红移效应影响的第一性原理研究. 物理学报, 2010, 59(6): 4156-4161. doi: 10.7498/aps.59.4156
    [18] 侯清玉, 赵春旺, 金永军. Al-2N高共掺浓度对ZnO半导体导电性能影响的第一性原理研究. 物理学报, 2009, 58(10): 7136-7140. doi: 10.7498/aps.58.7136
    [19] 杨银堂, 武 军, 蔡玉荣, 丁瑞雪, 宋久旭, 石立春. p型K:ZnO导电机理的第一性原理研究. 物理学报, 2008, 57(11): 7151-7156. doi: 10.7498/aps.57.7151
    [20] 彭丽萍, 徐 凌, 尹建武. N掺杂锐钛矿TiO2光学性能的第一性原理研究. 物理学报, 2007, 56(3): 1585-1589. doi: 10.7498/aps.56.1585
计量
  • 文章访问数:  5839
  • PDF下载量:  508
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-29
  • 修回日期:  2013-11-30
  • 刊出日期:  2014-03-05

/

返回文章
返回