搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

刻周期半圆弧槽窗片对次级电子倍增效应的抑制

张雪 范俊杰 王勇

引用本文:
Citation:

刻周期半圆弧槽窗片对次级电子倍增效应的抑制

张雪, 范俊杰, 王勇

Suppression effect of periodic semicircle groove disk on multipactor

Zhang Xue, Fan Jun-Jie, Wang Yong
PDF
导出引用
  • 为了抑制高功率盒形窗内的次级电子倍增效应, 研究了一种刻周期半圆弧槽窗片结构. 通过对槽内电场进行分析, 证明了半圆弧状槽可以有效避免尖锐边界的局部场增强效应. 利用蒙特卡罗随机算法对槽内的次级电子倍增效应进行数值模拟, 跟踪次级电子的轨迹及发展趋势, 获得了不同槽宽所对应的抑制次级电子倍增最低电场强度. 讨论了法向电场对半圆弧槽抑制次级电子倍增的影响. 该结构有望在高功率速调管中获得应用.
    In this paper, the periodic semicircle groove disk is investigated to restrain the multipactor phenomenon in high power pill-box window. Through the theoretical analysis, the semicircle groove is proved to avoid the local field enhancement, which always exists in the vicinity of the sharp boundary groove. The proper groove width with a corresponding minimal suppression tangential electric field is achieved by simulating the multipactor procedure with Monte-Carlo algorithm. The effect of normal electric field is also analyzed. This configuration is to be applied to the high power klystron.
    • 基金项目: 国家重点基础研究发展计划(批准号:2013CB328901)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2013CB328901)
    [1]

    Vlieks A E, Allen M A, Callin R S, Fowkes W R, Hoyt E W, Lebacqu J V, Lee T G 1989 IEEE Trans. Electr. Insul. 24 1023

    [2]

    Saito Y, Michizono S, Anami S, Kobayashi S 1993 IEEE Trans. Electr. Insul. 28 566

    [3]

    Saito Y 1993 IEEE Trans. Dielectr. Electr. Insul. 2 243

    [4]

    Power J G, Gai W, Gold S H, Kinkead A K, Konecny R, Jing C, Liu W, Yusof Z 2004 Phys. Rev. Lett. 23 164801

    [5]

    Zhu F, Zhang Z C, Luo J R, Zhang Y W 2010 IEEE Trans. ED 57 946

    [6]

    Michizono S, Kinbara A, Saito Y, Yamaguchi S, Anami S, Matuda N 1992 J. Vacuum Sci. Technol. A 10 1180

    [7]

    Michizono S, Saito Y, Yamaguchi S, Anami S, Matuda N, Kinbara A 1993 IEEE Trans. Electr. Insul. 28 692

    [8]

    Valfells A, Ang L K, Lau Y Y, Gilgenbach R M 2000 Phys. Plasmas 7 750

    [9]

    Cai L B, Wang J G, Zhu X Q, Wang Y, Xuan C, Xia H F 2012 Acta Phys. Sin. 61 075101 (in Chinese) [蔡利兵, 王建国, 朱湘琴, 王玥, 宣春, 夏洪富 2012 物理学报 61 075101]

    [10]

    Neuber A A, Edmiston G F, Krompholz J T, Dickens J C, Kristiansen M 2007 IEEE Trans. Magnetics 43 496

    [11]

    Edmiston G F, Krile J T, Neuber A A 2008 IEEE Trans. Plasma Sci. 36 946

    [12]

    Chang C, Liu G Z, Huang H J, Chen C H, Fang J Y 2009 Phys. Plasmas 16 083501

    [13]

    Chang C, Huang H J, Liu G Z, Chen C H, Hou Q 2009 Phys. Plasmas 105 123305

    [14]

    Cheng G X, Cai D, Hong Z Q, Liu L 2013 IEEE Trans. Dielectr. Electr. Insul. 20 1942

    [15]

    Cheng G X, Cheng X B, Liu L, Liu X L 2012 High Power Laser and Particle Beams 24 801 (in Chinese) [程国新, 程新兵, 刘列, 刘新亮 2012 强激光与粒子束 24 801]

    [16]

    Zhang H B, Yang J H, Cheng G X, Li G L, Shu T 2013 High Power Laser and Particle Beams 25 1189 (in Chinese) [张慧博, 杨建华, 程国新, 李国林, 舒挺 2013 强激光与粒子束 25 1189]

    [17]

    Kishek R A, Lau Y Y, Ang L K, Valfells A, Gilgenbach R M 1998 Phys. Plasmas 5 2120

    [18]

    Kryazhev A, Buyanova M, Semenov V, Anderson D, Lisak M 2002 Phys. Plasmas 9 4736

    [19]

    Ang L K, Lau Y Y, Kishek R A, Gilgenbach R M 1998 IEEE Trans. Plasma Sci. 26 290

    [20]

    Vaughan J R M 1961 IEEE Trans. ED 8 302

    [21]

    Vaughan J R M 1988 IEEE Trans. ED 35 1172

    [22]

    Zhu F, Zhang Z C, Dai S, Luo J R 2011 Acta Phys. Sin. 60 084103 (in Chinese) [朱方, 张兆传, 戴舜, 罗继润 2011 物理学报 60 084103]

    [23]

    Zhang X, Wang Y, Fan J J, Zhu F, Zhang R 2014 Acta Phys. Sin. 63 167901 (in Chinese) [张雪, 王勇, 范俊杰, 朱方, 张瑞 2014 物理学报 63 167901]

  • [1]

    Vlieks A E, Allen M A, Callin R S, Fowkes W R, Hoyt E W, Lebacqu J V, Lee T G 1989 IEEE Trans. Electr. Insul. 24 1023

    [2]

    Saito Y, Michizono S, Anami S, Kobayashi S 1993 IEEE Trans. Electr. Insul. 28 566

    [3]

    Saito Y 1993 IEEE Trans. Dielectr. Electr. Insul. 2 243

    [4]

    Power J G, Gai W, Gold S H, Kinkead A K, Konecny R, Jing C, Liu W, Yusof Z 2004 Phys. Rev. Lett. 23 164801

    [5]

    Zhu F, Zhang Z C, Luo J R, Zhang Y W 2010 IEEE Trans. ED 57 946

    [6]

    Michizono S, Kinbara A, Saito Y, Yamaguchi S, Anami S, Matuda N 1992 J. Vacuum Sci. Technol. A 10 1180

    [7]

    Michizono S, Saito Y, Yamaguchi S, Anami S, Matuda N, Kinbara A 1993 IEEE Trans. Electr. Insul. 28 692

    [8]

    Valfells A, Ang L K, Lau Y Y, Gilgenbach R M 2000 Phys. Plasmas 7 750

    [9]

    Cai L B, Wang J G, Zhu X Q, Wang Y, Xuan C, Xia H F 2012 Acta Phys. Sin. 61 075101 (in Chinese) [蔡利兵, 王建国, 朱湘琴, 王玥, 宣春, 夏洪富 2012 物理学报 61 075101]

    [10]

    Neuber A A, Edmiston G F, Krompholz J T, Dickens J C, Kristiansen M 2007 IEEE Trans. Magnetics 43 496

    [11]

    Edmiston G F, Krile J T, Neuber A A 2008 IEEE Trans. Plasma Sci. 36 946

    [12]

    Chang C, Liu G Z, Huang H J, Chen C H, Fang J Y 2009 Phys. Plasmas 16 083501

    [13]

    Chang C, Huang H J, Liu G Z, Chen C H, Hou Q 2009 Phys. Plasmas 105 123305

    [14]

    Cheng G X, Cai D, Hong Z Q, Liu L 2013 IEEE Trans. Dielectr. Electr. Insul. 20 1942

    [15]

    Cheng G X, Cheng X B, Liu L, Liu X L 2012 High Power Laser and Particle Beams 24 801 (in Chinese) [程国新, 程新兵, 刘列, 刘新亮 2012 强激光与粒子束 24 801]

    [16]

    Zhang H B, Yang J H, Cheng G X, Li G L, Shu T 2013 High Power Laser and Particle Beams 25 1189 (in Chinese) [张慧博, 杨建华, 程国新, 李国林, 舒挺 2013 强激光与粒子束 25 1189]

    [17]

    Kishek R A, Lau Y Y, Ang L K, Valfells A, Gilgenbach R M 1998 Phys. Plasmas 5 2120

    [18]

    Kryazhev A, Buyanova M, Semenov V, Anderson D, Lisak M 2002 Phys. Plasmas 9 4736

    [19]

    Ang L K, Lau Y Y, Kishek R A, Gilgenbach R M 1998 IEEE Trans. Plasma Sci. 26 290

    [20]

    Vaughan J R M 1961 IEEE Trans. ED 8 302

    [21]

    Vaughan J R M 1988 IEEE Trans. ED 35 1172

    [22]

    Zhu F, Zhang Z C, Dai S, Luo J R 2011 Acta Phys. Sin. 60 084103 (in Chinese) [朱方, 张兆传, 戴舜, 罗继润 2011 物理学报 60 084103]

    [23]

    Zhang X, Wang Y, Fan J J, Zhu F, Zhang R 2014 Acta Phys. Sin. 63 167901 (in Chinese) [张雪, 王勇, 范俊杰, 朱方, 张瑞 2014 物理学报 63 167901]

  • [1] 舒盼盼, 赵朋程, 王瑞. 110 GHz微波输出窗内表面次级电子倍增特性的电磁粒子模拟. 物理学报, 2023, 72(9): 095202. doi: 10.7498/aps.72.20222235
    [2] 王丽敏, 段丙皇, 许献国, 李昊, 陈治军, 杨坤杰, 张硕. 基于蒙特卡罗模拟研究锆钛酸铅镧材料的中子辐照损伤. 物理学报, 2022, 71(7): 076101. doi: 10.7498/aps.71.20212041
    [3] 左春彦, 高飞, 戴忠玲, 王友年. 高功率微波输出窗内侧击穿动力学的PIC/MCC模拟研究. 物理学报, 2018, 67(22): 225201. doi: 10.7498/aps.67.20181260
    [4] 张雪, 王勇, 徐强. 双面次级电子倍增效应向单面次级电子倍增效应发展规律的研究. 物理学报, 2015, 64(20): 207902. doi: 10.7498/aps.64.207902
    [5] 张雪, 王勇, 范俊杰, 张瑞. 圆窗片表面次级电子倍增效应的数值模拟. 物理学报, 2014, 63(22): 227901. doi: 10.7498/aps.63.227901
    [6] 张雪, 王勇, 范俊杰, 朱方, 张瑞. 金属壁与介质窗之间次级电子倍增效应的研究. 物理学报, 2014, 63(16): 167901. doi: 10.7498/aps.63.167901
    [7] 华钰超, 董源, 曹炳阳. 硅纳米薄膜中声子弹道扩散导热的蒙特卡罗模拟. 物理学报, 2013, 62(24): 244401. doi: 10.7498/aps.62.244401
    [8] 兰木, 向钢, 辜刚旭, 张析. 一种晶体表面水平纳米线生长机理的蒙特卡罗模拟研究. 物理学报, 2012, 61(22): 228101. doi: 10.7498/aps.61.228101
    [9] 肖渊, 王晓方, 滕建, 陈晓虎, 陈媛, 洪伟. 激光加速电子束放射照相的模拟研究. 物理学报, 2012, 61(23): 234102. doi: 10.7498/aps.61.234102
    [10] 蔡利兵, 王建国, 朱湘琴, 王玥, 宣春, 夏洪富. 外磁场对介质表面次级电子倍增效应的影响. 物理学报, 2012, 61(7): 075101. doi: 10.7498/aps.61.075101
    [11] 樊小辉, 赵兴宇, 王丽娜, 张丽丽, 周恒为, 张晋鲁, 黄以能. 分子串模型中空间弛豫模式的弛豫动力学的蒙特卡罗模拟. 物理学报, 2011, 60(12): 126401. doi: 10.7498/aps.60.126401
    [12] 蔡利兵, 王建国, 朱湘琴. 强直流场介质表面次级电子倍增效应的数值模拟研究. 物理学报, 2011, 60(8): 085101. doi: 10.7498/aps.60.085101
    [13] 蔡利兵, 王建国. 微波磁场和斜入射对介质表面次级电子倍增的影响. 物理学报, 2010, 59(2): 1143-1147. doi: 10.7498/aps.59.1143
    [14] 蔡利兵, 王建国. 介质表面高功率微波击穿的数值模拟. 物理学报, 2009, 58(5): 3268-3273. doi: 10.7498/aps.58.3268
    [15] 高飞, 山田亮子, 渡边光男, 刘华锋. 应用蒙特卡罗模拟进行正电子发射断层成像仪散射特性分析. 物理学报, 2009, 58(5): 3584-3591. doi: 10.7498/aps.58.3584
    [16] 徐兰青, 李 晖, 肖郑颖. 基于蒙特卡罗模拟的散射介质中后向光散射模型及分析应用. 物理学报, 2008, 57(9): 6030-6035. doi: 10.7498/aps.57.6030
    [17] 和青芳, 徐 征, 刘德昂, 徐叙瑢. 蒙特卡罗方法模拟薄膜电致发光器件中碰撞离化的作用. 物理学报, 2006, 55(4): 1997-2002. doi: 10.7498/aps.55.1997
    [18] 王世奇, 连贵君, 熊光成. La0.7Ca0.3MnO3和CeO2混合块状样品电输运性质及使用分形迭代电阻网络模型的计算模拟. 物理学报, 2005, 54(8): 3815-3821. doi: 10.7498/aps.54.3815
    [19] 王志军, 董丽芳, 尚 勇. 电子助进化学气相沉积金刚石中发射光谱的蒙特卡罗模拟. 物理学报, 2005, 54(2): 880-885. doi: 10.7498/aps.54.880
    [20] 郭宝增. 用全带Monte Carlo方法模拟纤锌矿相GaN和ZnO材料的电子输运特性. 物理学报, 2002, 51(10): 2344-2348. doi: 10.7498/aps.51.2344
计量
  • 文章访问数:  4730
  • PDF下载量:  310
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-04
  • 修回日期:  2014-07-24
  • 刊出日期:  2014-11-05

/

返回文章
返回