搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

BaxOy小团簇修饰Ru(0001)表面的结构稳定性和氮分子吸附性质

闫静 徐位云 郭辉 龚毓 宓一鸣 赵新新

引用本文:
Citation:

BaxOy小团簇修饰Ru(0001)表面的结构稳定性和氮分子吸附性质

闫静, 徐位云, 郭辉, 龚毓, 宓一鸣, 赵新新

Geometric stability and nitrogen adsorption properties of small BaxOy cluster-modified Ru(0001) surface

Yan Jing, Xu Wei-Yun, Guo Hui, Gong Yu, Mi Yi-Ming, Zhao Xin-Xin
PDF
导出引用
  • 为了说明钡助剂的存在形式, 本文采用第一性原理方法研究了BaxOy小团簇修饰Ru(0001)表面的结构稳定性和氮分子吸附性质. 基于总能的热力学分析发现, 在实验条件下(500 K, PH2O/PH2-3), Ba2O团簇比BaO2, BaO, Ba和O等团簇(原子)更加稳定. 这证实含有金属性钡原子的团簇也是氧化钡助剂可能的工作状态. 表面电荷差分密度说明Ba2O团簇的氧和钡原子与衬底的作用不同. 不过Ba2O团簇氧和钡原子附近的氮分子吸附行为相似, Ba2O团簇增强了氮分子和衬底的相互作用. Ba2O团簇氧和钡原子附近的氮分子吸附能分别为0.78 和0.88 eV, 均大于清洁表面的0.67 eV. 氮分子间距和氮分子的拉伸振动频率都表明Ba2O团簇在一定程度上活化了吸附氮分子. Ba2O团簇氧和钡原子附近的N–N键长分别为0.117和0.116 nm, 大于清洁表面的0.114 nm. 氧和钡原子附近氮分子的拉伸振动频率分别为 1888 和1985 cm-1, 小于清洁表面的2193 cm-1. 电荷差分密度的计算结果说明, 削弱作用主要来自于Ba2O团簇中钡离子和氮分子间的静电作用. 两者间的静电作用增加了氮分子π 反键轨道的占据数, 促进了氮分子极化, 从而削弱氮分子键.
    Barium promoter is widely used in the secondary ammonia synthesis catalysis, which could greatly improve the performance of a catalyst. Although barium oxide is confirmed as the main component of barium promoter, the existence of metallic barium has been argued. In order to theoretically clarify this issue, the first principles calculations have been performed to study the geometric stability and the nitrogen adsorption properties of small BaxOy cluster-modified Ru(0001) surface. It is found that Ba2O cluster is more stable than other small clusters or atoms (BaO2, BaO, Ba and O) on the Ru(0001) surface under the condition that the pressure rate of H2O/H2 is below 1‰. This implies that BaO promoter could be partially reduced by hydrogen gas in the experiment. According to the results of the projected density of states and charge difference induced by modification of cluster, the O atom in Ba2O cluster gains electrons from dz2 orbit of the underlying Ru atom, and forms O–Ru bonds; while Ba atom in Ba2O clusters transfers electrons to the nearest Ru atoms and forms Ba-Ru metallic bonds. As the adsorption of nitrogen is an initial reactant in ammonia synthesis, we also study the nitrogen adsorption properties near the Ba2O cluster. Compared with the different chemical properties of O and Ba atoms, the adsorption properties of nitrogen molecules on the sites close to O and Ba atoms are similar. The nitrogen adsorption energies at the corresponding sites are calculated to be 0.88 and 0.78 eV, respectively. The bond lengths of nitrogen molecules are about 0.187 nm near O atom, and 0.190 nm near Ba atom, both of which are shorter than those on a clean surface (~ 0.197 nm). And the stretching vibrational frequency of a nitrogen molecule is calculated to be 1888 cm-1 near the O atom, 1985 cm-1 near the Ba atom, both of which are also less than those on a clean surface (~ 2193 cm-1). This suggests that Ba2O cluster may weaken the bond strength of nitrogen molecules. According to the charge difference induced by nitrogen adsorption, the electrostatic interactions of Ba2O clusters increase the occupation of π antibonding orbital and the electric polarization of the nitrogen molecule, and thus weaken the N–N bond.
    • 基金项目: 上海市自然科学基金(批准号: 14ZR1418600)和上海工程技术大学校基金(批准号: 2012gp43, cs1421001)资助的课题.
    • Funds: Project Supported by the Shanghai Natural Science Foundation, China (Grant No. 14ZR1418600), and the Subjects Construction Program of Shanghai University of Engineering Science, China (Grant Nos. 2012gp43, cs1421001).
    [1]

    Hansen T W, Wagner J B, Hansen P L, Dahl S, Topsoe H, Jacobsen C J H 2001 Science 294 1508

    [2]

    Zeng H S, Inazu K, Aika K 2002 J. Catal. 211 33

    [3]

    Guraya M, Sprenger S, Rarog-Pilecka W, Szmigiel D, Kowalczyk Z, Muhler M 2004 Appl. Surf. Sci. 238 77

    [4]

    Rossetti I, Pernicone N, Forni L 2001 App. Cata. a-Gen. 208 271

    [5]

    Rossetti I, Mangiarini F, Forni L 2007 App. Cata. a-Gen. 323 219

    [6]

    Kowalczyk Z, Krukowski M, Rarog-Pilecka W, Szmigiel D, Zielinski J 2003 App. Cata. a-Gen. 248 67

    [7]

    Mortensen J J, Morikawa Y, Hammer B, Norskov J K 1997 J. Catal. 169 85

    [8]

    Morgan G A, Sorescu D C, Kim Y K, Yates J T 2007 Surf. Sci. 601 3533

    [9]

    Honkala K, Hellman A, Remediakis I N, Logadottir A, Carlsson A, Dahl S, Christensen C H, Norskov J K 2005 Science 307 555

    [10]

    Hellman A, Honkala K, Remediakis I N, Logadottir A, Carlsson A, Dahl S, Christensen C H, Norskov J K 2009 Surf. Sci. 603 1731

    [11]

    Szmigiel D, Bielawa H, Kurtz M, Hinrichsen O, Muhler M, Rarog W, Jodzis S, Kowalczyk Z, Znak L, Zielinski J 2002 J. Catal. 205 205

    [12]

    Truszkiewicz E, Rarog-Pilecka W, Schmidt-Szatowski K, Jodzis S, Wilczkowska E, Lomot D, Kaszkur Z, Karpinski Z, Kowalczyk Z 2009 J. Catal. 265 181

    [13]

    Zhao X X, Tao X M, Chen W B, Cai J Q, Tan M Q 2005 Acta. Phys. Sin. 54 5849 (in Chinese) [赵新新, 陶向明, 陈文斌, 蔡建秋, 谭明秋 2005 物理学报 54 5849]

    [14]

    Zhao X X, Tao X M, Mi Y M, Wu J B, Wang L L, Tan M Q 2011 Acta. Chim. Sin. 69 2201 (in Chinese) [赵新新, 陶向明, 宓一鸣, 吴建宝, 汪丽莉, 谭明秋 2011 化学学报 69 2201]

    [15]

    Zhao X X, Tao X M, Mi Y M, Ji X, Wang L L, Wu J B, Tan M Q 2012 Acta Phy. Sin. 61 136802 (in Chinese) [赵新新, 陶向明, 宓一鸣, 季鑫, 汪丽莉, 吴建宝, 谭明秋 2012 物理学报 61 136802]

    [16]

    Kresse G, Furthmuller J 1996 Comp. Mater. Sci. 6 15

    [17]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169

    [18]

    Blöhl P E 1994 Phys. Rev. B 50 17953

    [19]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [20]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [21]

    Kittel C 1976 Introduction to solid state physics (7th ed.) (New York: John Wiley and Sons) p23

    [22]

    Kim Y D, Seitsonen A P, Over H 2000 Surf. Sci. 465 1

    [23]

    Atkins P, Julio de P 2005 Physical Chemistry (7th ed.) (Oxford: Oxford University Press) p628

    [24]

    Aika K 1986 Angew Chem. Int. Edit. 25 558

  • [1]

    Hansen T W, Wagner J B, Hansen P L, Dahl S, Topsoe H, Jacobsen C J H 2001 Science 294 1508

    [2]

    Zeng H S, Inazu K, Aika K 2002 J. Catal. 211 33

    [3]

    Guraya M, Sprenger S, Rarog-Pilecka W, Szmigiel D, Kowalczyk Z, Muhler M 2004 Appl. Surf. Sci. 238 77

    [4]

    Rossetti I, Pernicone N, Forni L 2001 App. Cata. a-Gen. 208 271

    [5]

    Rossetti I, Mangiarini F, Forni L 2007 App. Cata. a-Gen. 323 219

    [6]

    Kowalczyk Z, Krukowski M, Rarog-Pilecka W, Szmigiel D, Zielinski J 2003 App. Cata. a-Gen. 248 67

    [7]

    Mortensen J J, Morikawa Y, Hammer B, Norskov J K 1997 J. Catal. 169 85

    [8]

    Morgan G A, Sorescu D C, Kim Y K, Yates J T 2007 Surf. Sci. 601 3533

    [9]

    Honkala K, Hellman A, Remediakis I N, Logadottir A, Carlsson A, Dahl S, Christensen C H, Norskov J K 2005 Science 307 555

    [10]

    Hellman A, Honkala K, Remediakis I N, Logadottir A, Carlsson A, Dahl S, Christensen C H, Norskov J K 2009 Surf. Sci. 603 1731

    [11]

    Szmigiel D, Bielawa H, Kurtz M, Hinrichsen O, Muhler M, Rarog W, Jodzis S, Kowalczyk Z, Znak L, Zielinski J 2002 J. Catal. 205 205

    [12]

    Truszkiewicz E, Rarog-Pilecka W, Schmidt-Szatowski K, Jodzis S, Wilczkowska E, Lomot D, Kaszkur Z, Karpinski Z, Kowalczyk Z 2009 J. Catal. 265 181

    [13]

    Zhao X X, Tao X M, Chen W B, Cai J Q, Tan M Q 2005 Acta. Phys. Sin. 54 5849 (in Chinese) [赵新新, 陶向明, 陈文斌, 蔡建秋, 谭明秋 2005 物理学报 54 5849]

    [14]

    Zhao X X, Tao X M, Mi Y M, Wu J B, Wang L L, Tan M Q 2011 Acta. Chim. Sin. 69 2201 (in Chinese) [赵新新, 陶向明, 宓一鸣, 吴建宝, 汪丽莉, 谭明秋 2011 化学学报 69 2201]

    [15]

    Zhao X X, Tao X M, Mi Y M, Ji X, Wang L L, Wu J B, Tan M Q 2012 Acta Phy. Sin. 61 136802 (in Chinese) [赵新新, 陶向明, 宓一鸣, 季鑫, 汪丽莉, 吴建宝, 谭明秋 2012 物理学报 61 136802]

    [16]

    Kresse G, Furthmuller J 1996 Comp. Mater. Sci. 6 15

    [17]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169

    [18]

    Blöhl P E 1994 Phys. Rev. B 50 17953

    [19]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [20]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [21]

    Kittel C 1976 Introduction to solid state physics (7th ed.) (New York: John Wiley and Sons) p23

    [22]

    Kim Y D, Seitsonen A P, Over H 2000 Surf. Sci. 465 1

    [23]

    Atkins P, Julio de P 2005 Physical Chemistry (7th ed.) (Oxford: Oxford University Press) p628

    [24]

    Aika K 1986 Angew Chem. Int. Edit. 25 558

  • [1] 黄德饶, 宋俊杰, 何丕模, 黄凯凯, 张寒洁. Ru(0001)上的9,9′-二亚呫吨分子吸附行为和石墨烯摩尔超结构. 物理学报, 2022, 71(21): 216801. doi: 10.7498/aps.71.20221057
    [2] 黄德饶, 宋俊杰, 何丕模, 黄凯凯, 张寒洁. Ru(0001)上的9,9'-二亚呫吨分子吸附行为和石墨烯摩尔超结构研究. 物理学报, 2022, 0(0): . doi: 10.7498/aps.7120221057
    [3] 姚建刚, 宫宝安, 王渊旭. NO在Yn(n=1–12)团簇表面的解离性吸附. 物理学报, 2013, 62(24): 243601. doi: 10.7498/aps.62.243601
    [4] 王乐, 刘阳, 徐国堂, 李晓艳, 董前民, 黄杰, 梁培. 分子团簇表面吸附敏化ZnO纳米线的第一性原理研究. 物理学报, 2012, 61(6): 063103. doi: 10.7498/aps.61.063103
    [5] 赵新新, 陶向明, 宓一鸣, 季鑫, 汪丽莉, 吴建宝, 谭明秋. Ru(0001) 表面BaO吸附层的原子结构和氮分子的吸附性质. 物理学报, 2012, 61(13): 136802. doi: 10.7498/aps.61.136802
    [6] 黄平, 杨春. TiO2分子在GaN(0001)表面吸附的理论研究. 物理学报, 2011, 60(10): 106801. doi: 10.7498/aps.60.106801
    [7] 赵骞, 张林, 祁阳, 张宗宁. 低温下Cu13团簇负载于Cu(001)表面上结构变化的分子动力学研究. 物理学报, 2009, 58(13): 47-S52. doi: 10.7498/aps.58.47
    [8] 陈宏善, 孟凡顺, 李向富, 张素玲. (TiO2)n(n=3—6)团簇吸附水分子的理论研究. 物理学报, 2009, 58(2): 887-892. doi: 10.7498/aps.58.887
    [9] 张宗宁, 刘美林, 李蔚, 耿长建, 赵骞, 张林. 熔融Cu55团簇在Cu(010)表面上凝固过程的分子动力学模拟. 物理学报, 2009, 58(13): 67-S71. doi: 10.7498/aps.58.67
    [10] 张林, 张彩碚, 祁阳. 低温下Au959团簇负载于MgO(100)表面后结构变化的分子动力学研究. 物理学报, 2009, 58(13): 53-S57. doi: 10.7498/aps.58.53
    [11] 窦卫东, 黄 寒, 张寒洁, 宋 飞, 李海洋, 何丕模, 鲍世宁, 陈 桥, 周午纵. tetracene 分子在Ru(1010)表面的吸附结构及其电子态研究. 物理学报, 2007, 56(7): 4262-4269. doi: 10.7498/aps.56.4262
    [12] 胡昉, 张寒洁, 吕 斌, 陶永升, 李海洋, 鲍世宁, 何丕模, 王学森. Ge在Ru(0001)表面上生长及其性质研究. 物理学报, 2005, 54(3): 1330-1333. doi: 10.7498/aps.54.1330
    [13] 吕斌, 吕萍, 施申蕾, 张建华, 唐建新, 楼辉, 何丕模, 鲍世宁. OPCOT在Ru(0001)表面上的紫外光电子能谱研究. 物理学报, 2002, 51(11): 2644-2648. doi: 10.7498/aps.51.2644
    [14] 徐毅, 潘正瑛, 王月霞. 低能CU6团簇在CU(001)表面和AU(001)表面沉积的分子动力学模拟研究. 物理学报, 2001, 50(1): 88-94. doi: 10.7498/aps.50.88
    [15] 王培录, 刘仲阳, 郑思孝, 廖小东, 杨朝文, 唐阿友, 师勉恭, 杨百方, 缪竞威. 氮原子、分子与团簇离子注入Si(111)的特性研究. 物理学报, 2001, 50(5): 860-864. doi: 10.7498/aps.50.860
    [16] 庄友谊, 吴悦, 张建华, 张寒洁, 李波, 李海洋, 何丕模, 鲍世宁. C2H4在清洁和有Cs覆盖的Ru(0001)表面吸附的TDS研究. 物理学报, 2001, 50(6): 1185-1188. doi: 10.7498/aps.50.1185
    [17] 张寒洁, 颜朝军, 李海洋, 何丕模, 鲍世宁, 汪健, 徐纯一, 徐亚伯. NO在清洁和Cs覆盖的Ru(100)表面上吸附的热脱附谱. 物理学报, 2000, 49(3): 577-580. doi: 10.7498/aps.49.577
    [18] 庄友谊, 吴 悦, 张建华, 张寒洁, 汪 健, 李海洋, 何丕模, 鲍世宁. C2H4在Ru(1010)表面吸附与分解的研究. 物理学报, 2000, 49(10): 2101-2105. doi: 10.7498/aps.49.2101
    [19] 何丕模, K.Jacobi. Ru(0001)表面上O-Ru伸缩振动的覆盖度依赖特性. 物理学报, 1999, 48(2): 284-288. doi: 10.7498/aps.48.284
    [20] 李海洋, 鲍世宁, 张训生, 范朝阳, 徐亚伯. CO与Cs在Ru(101-0)表面上的共吸附研究. 物理学报, 1997, 46(3): 544-549. doi: 10.7498/aps.46.544
计量
  • 文章访问数:  5063
  • PDF下载量:  481
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-21
  • 修回日期:  2014-09-04
  • 刊出日期:  2015-01-05

/

返回文章
返回