搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速通道压裂裂缝的高导流能力分析及其影响因素研究

严侠 黄朝琴 辛艳萍 姚军 李阳 巩亮

引用本文:
Citation:

高速通道压裂裂缝的高导流能力分析及其影响因素研究

严侠, 黄朝琴, 辛艳萍, 姚军, 李阳, 巩亮

Theoretical analysis of high flow conductivity of a fracture induced in HiWay fracturing

Yan Xia, Huang Zhao-Qin, Xin Yan-Ping, Yao Jun, Li Yang, Gong Liang
PDF
导出引用
  • 高速通道压裂是近年在非常规致密油气资源开采中出现的新工艺, 已在世界范围内推广实施, 并取得了良好的增产效果. 该技术可使支撑剂在人工压裂缝中形成簇团式分布, 从而形成油气高速流动通道, 提高裂缝的导流能力. 但目前对于高速通道压裂裂缝高导流能力的形成机理及其影响因素尚不清楚. 对此, 本文从流体力学理论出发, 首先将高速通道压裂裂缝内形成的支撑剂簇团视为渗流区域, 簇团间的大通道视为自由流动区域; 然后基于Darcy-Brinkman方程建立了裂缝内的流动数学模型, 采用均匀化理论对该流动数学模型进行了尺度升级, 推导得到了高速通道压裂裂缝的渗透率, 揭示了其高导流能力的形成机理; 并以此为基础, 分析了不同支撑剂簇团形状、大小以及分布方式等因素对其导流能力的影响, 可为高速通道压裂工艺参数设计与优化提供基础.
    HiWay (or channel) fracturing has been a new technology for development of unconventional oil and gas resources in recent years. It has been carried out more than 4000 times worldwide, and obtained good performance in oil and gas recovery. HiWay fracturing improves the flow conductivity of fractures by constructing inhomogeneous distributions of proppant and stable, open flow channel in hydraulic fractures. However, the mechanism and impact factors of high flow conductivity of HiWay fractures are not very clear. To the best of our knowledge, there are no relevant research reports available for such analysis. In this paper, it is first assumed that the fluid flow in proppant clusters follows the Darcy's law and the flow in the channels with proppant clusters is laminar viscous flow, which can be described using Stokes equation. However, the coupling of Darcy-Stokes equations is difficult, and some untrivial interface conditions at the interface between the porous and free-flow regions should be introduced, this will increase greater complexity in numerical computation. As an alternative approach, the Darcy-Brinkman equation is often used for this coupling flow problem, which provides a unified equation with continuous variable coefficients in the two different flow regions. Therefore, there is not necessary to introduce specific interface conditions any more. In this work, we first applied the Darcy-Brinkman equation to model the fluid flow in hydraulic fractures, and then the upscaling of Darcy-Brinkman equation is conducted to evaluate the equivalent permeability of a fracture by using homogenization theory and finite element numerical simulation. Finally, various impact factors of flow conductivity of a hydraulic fracture, such as the cluster shape, cluster distribution, cluster size, etc., are analyzed based on the equivalent permeability. Results show that the permeability of a hydraulic fracture is considerably greater than thst of proppant cluster when the free-flow region is well connected in the fracture, and the geometric properties of proppant clusters are also the key influencing factors for the flow conductivity. Therefore, in HiWay fracturing process, how to construct the well-connected free-flow region in hydraulic fractures is most important, and the flow conductivity of proppant cluster is not the keypoint. However, the surface roughness and stress sensitivity of the hydraulic fractures have not been considered in this work, it will be considered in the future work.
    • 基金项目: 国家重点基础研究发展计划(批准号:2011CB201004)、国家自然科学基金(批准号:51404292,51234007)、山东省自然科学基金(批准号:ZR2014EEQ010)和中央高校基本科研业务费专项资金(批准号:14CX06091A,14CX05027A,13CX05007A,13CX05017A,13CX02052A)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2011CB201004), the National Natural Science Foundation of China (Grant Nos. 51404292, 51234007), the Shandong Provincial Natural Science Foundation, China (Grant No. ZR2014EEQ010), and the Fundamental Research Funds for the Central Universities of China (Grant Nos. 14CX06091A, 14CX05027A, 13CX05007A, 13CX05017A, 13CX02052A).
    [1]

    Cai B, Ding Y H, Cui Z Q, Yang Z Z, Shen H 2014 Adv. Mater. Res. 941 2521

    [2]

    Tang Y, Tang X, Wang G Y, Zhang Q 2011 Geol. Bull. Chin. 30 393 (in Chinese) [唐颖, 唐玄, 王广源, 张琴 2011 地质通报 30 393]

    [3]

    Gillard M R, Medvedev O, Hosein P R, Medvedev A, Peñacorada F, d'Huteau E 2010 SPE Annual Technical Conference and Exhibition Florence, Italy, September 19-22, 2010 p1 (SPE 135034)

    [4]

    Medvedev A V, Kraemer C C, Pena A A, Panga M K R 2013 SPE Hydraulic Fracturing Technology Conference The Woodlands, Texas, USA February 4-6, 2013 p1 (SPE 163836)

    [5]

    Valdes-Parada F J, Alberto Ochoa-Tapia J, Alvarez-Ramirez J 2007 Physica A: Statistical Mechanics and its Applications 385 69

    [6]

    Lesinigo, Matteo, D'Angelo, Carlo, Quarteroni, Alfio 2011 Numer. Math. 117 717

    [7]

    Joodi A S, Sizaret S, Binet S, Bruand A, Alberic P, Lepiller M 2010 Hydrogeol. J. 18 295

    [8]

    Ng C O, Wang C Y 2010 Transport Porous Med. 85 605

    [9]

    Hornung U 1997 Homogenization and porous media (Vol. 6) Springer pp 1-21

    [10]

    Huang Z Q, Yao J, Li Y J, Wang C C, Lv X R 2010 Sci. China Ser. E 53 839

    [11]

    Oriani F, Renard P 2014 Adv. Water Resour. 64 47

    [12]

    Qu Z L, Ren C Y, Pei Y M, Fang D N 2015 Chin. Phys. B 24 024303

    [13]

    Li M J, Chen L 2011 Chin. Phys. Lett. 28 085203

    [14]

    Zhao G Z, Yu X J, Guo P Y 2013 Chin. Phys. B 22 050206

    [15]

    Wang X C 2003 Finite Element Method (Bei Jing: Tsinghua University Press) pp98-129 (in Chinese) [王勖成 2003 有限单元法(北京: 清华大学出版社)第 98-129 页]

    [16]

    Huang Z Q, Yao J, Wang Y Y 2013 Commun. Comput. Phys. 13 540

    [17]

    Zhang R P, Yu X J, Zhao G Z 2013 Chin. Phys. B 22 030210

    [18]

    Zhou S T, Zhang Q, Li M Z, Wang W Y 2002 Adv. Mech. 32 119 (in Chinese) [周生田, 张琪, 李明忠, 王卫阳 2002 力学进展 32 119]

    [19]

    Zou Y S, Ma X F, Wang L, Lin X 2011 J. Chin. Coal Soc. 36 473 (in Chinese) [邹雨时, 马新仿, 王雷, 林鑫 2011 煤炭学报 36 473]

    [20]

    Wen Q Z, Zhang S C, Li L D 2006 Pet. Geol. &Recovery Efficiency 13 97 (in Chinese) [温庆志, 张士诚, 李林地 2006 油气地质与采收率 13 97]

    [21]

    Laptev V 2003 Ph. D. Dissertation ( Kaiserslautern: University Kaiserslautern)

    [22]

    Khalili S, Dinarvand S, Hosseini R, Tamim H, Pop I 2014 Chin. Phys. B 23 048203

    [23]

    Beavers G S, Joseph D D 1967 J. Fluid Mech. 30 197

    [24]

    Huang Z Q, Gao B, Yao J 2014 Sci. China Ser. G 44 212 (in Chinese) [黄朝琴, 高博, 姚军 2014 中国科学: 物理学, 力学, 天文学 44 212]

    [25]

    Brinkman H C 1949 Appl. Sci. Res. 1 27

    [26]

    Popov P, Efendiev Y C, Qin G 2009 Commun. Comput. Phys. 6 162

    [27]

    Jiang M, Liu H, Huang H 2009 Software Guide 8 175 (in Chinese) [江明, 刘辉, 黄欢 2009 软件导刊 8 175]

  • [1]

    Cai B, Ding Y H, Cui Z Q, Yang Z Z, Shen H 2014 Adv. Mater. Res. 941 2521

    [2]

    Tang Y, Tang X, Wang G Y, Zhang Q 2011 Geol. Bull. Chin. 30 393 (in Chinese) [唐颖, 唐玄, 王广源, 张琴 2011 地质通报 30 393]

    [3]

    Gillard M R, Medvedev O, Hosein P R, Medvedev A, Peñacorada F, d'Huteau E 2010 SPE Annual Technical Conference and Exhibition Florence, Italy, September 19-22, 2010 p1 (SPE 135034)

    [4]

    Medvedev A V, Kraemer C C, Pena A A, Panga M K R 2013 SPE Hydraulic Fracturing Technology Conference The Woodlands, Texas, USA February 4-6, 2013 p1 (SPE 163836)

    [5]

    Valdes-Parada F J, Alberto Ochoa-Tapia J, Alvarez-Ramirez J 2007 Physica A: Statistical Mechanics and its Applications 385 69

    [6]

    Lesinigo, Matteo, D'Angelo, Carlo, Quarteroni, Alfio 2011 Numer. Math. 117 717

    [7]

    Joodi A S, Sizaret S, Binet S, Bruand A, Alberic P, Lepiller M 2010 Hydrogeol. J. 18 295

    [8]

    Ng C O, Wang C Y 2010 Transport Porous Med. 85 605

    [9]

    Hornung U 1997 Homogenization and porous media (Vol. 6) Springer pp 1-21

    [10]

    Huang Z Q, Yao J, Li Y J, Wang C C, Lv X R 2010 Sci. China Ser. E 53 839

    [11]

    Oriani F, Renard P 2014 Adv. Water Resour. 64 47

    [12]

    Qu Z L, Ren C Y, Pei Y M, Fang D N 2015 Chin. Phys. B 24 024303

    [13]

    Li M J, Chen L 2011 Chin. Phys. Lett. 28 085203

    [14]

    Zhao G Z, Yu X J, Guo P Y 2013 Chin. Phys. B 22 050206

    [15]

    Wang X C 2003 Finite Element Method (Bei Jing: Tsinghua University Press) pp98-129 (in Chinese) [王勖成 2003 有限单元法(北京: 清华大学出版社)第 98-129 页]

    [16]

    Huang Z Q, Yao J, Wang Y Y 2013 Commun. Comput. Phys. 13 540

    [17]

    Zhang R P, Yu X J, Zhao G Z 2013 Chin. Phys. B 22 030210

    [18]

    Zhou S T, Zhang Q, Li M Z, Wang W Y 2002 Adv. Mech. 32 119 (in Chinese) [周生田, 张琪, 李明忠, 王卫阳 2002 力学进展 32 119]

    [19]

    Zou Y S, Ma X F, Wang L, Lin X 2011 J. Chin. Coal Soc. 36 473 (in Chinese) [邹雨时, 马新仿, 王雷, 林鑫 2011 煤炭学报 36 473]

    [20]

    Wen Q Z, Zhang S C, Li L D 2006 Pet. Geol. &Recovery Efficiency 13 97 (in Chinese) [温庆志, 张士诚, 李林地 2006 油气地质与采收率 13 97]

    [21]

    Laptev V 2003 Ph. D. Dissertation ( Kaiserslautern: University Kaiserslautern)

    [22]

    Khalili S, Dinarvand S, Hosseini R, Tamim H, Pop I 2014 Chin. Phys. B 23 048203

    [23]

    Beavers G S, Joseph D D 1967 J. Fluid Mech. 30 197

    [24]

    Huang Z Q, Gao B, Yao J 2014 Sci. China Ser. G 44 212 (in Chinese) [黄朝琴, 高博, 姚军 2014 中国科学: 物理学, 力学, 天文学 44 212]

    [25]

    Brinkman H C 1949 Appl. Sci. Res. 1 27

    [26]

    Popov P, Efendiev Y C, Qin G 2009 Commun. Comput. Phys. 6 162

    [27]

    Jiang M, Liu H, Huang H 2009 Software Guide 8 175 (in Chinese) [江明, 刘辉, 黄欢 2009 软件导刊 8 175]

  • [1] 高彦丽, 徐维南, 周杰, 陈世明. 二元双层耦合网络渗流行为分析. 物理学报, 2024, 73(16): 168901. doi: 10.7498/aps.73.20240454
    [2] 马平, 田径, 田得阳, 张宁, 吴明兴, 唐璞. 应用于超高速流场电子密度分布测量的七通道微波干涉仪测量系统. 物理学报, 2024, 73(17): 172401. doi: 10.7498/aps.73.20240656
    [3] 马金龙, 杜长峰, 隋伟, 许向阳. 基于耦合强度的双层网络数据传输能力. 物理学报, 2020, 69(18): 188901. doi: 10.7498/aps.69.20200181
    [4] 王德鑫, 那仁满都拉. 耦合双泡声空化特性的理论研究. 物理学报, 2018, 67(3): 037802. doi: 10.7498/aps.67.20171805
    [5] 曾晖, 赵俊. SeN2自由基解析势能函数的耦合簇理论研究. 物理学报, 2014, 63(6): 063101. doi: 10.7498/aps.63.063101
    [6] 刘磊, 费建芳, 章立标, 黄小刚, 程小平. 台风条件下一种新的浪流相互作用参数化方法在耦合模式中的应用. 物理学报, 2012, 61(5): 059201. doi: 10.7498/aps.61.059201
    [7] 王银博, 薛驰, 冯庆荣. 钛离子辐照对MgB2超导薄膜的载流能力和磁通钉扎能力的影响. 物理学报, 2012, 61(19): 197401. doi: 10.7498/aps.61.197401
    [8] 陈阳益, 许弘莒, 张宪国. 无旋性前进重力波传递在均匀流中的Lagrange解析解与试验验证Ⅰ.理论解析解. 物理学报, 2012, 61(3): 034702. doi: 10.7498/aps.61.034702
    [9] 施德恒, 张金平, 孙金锋, 刘玉芳, 朱遵略. 用耦合簇理论及相关一致五重基研究SiH2(X1A1)自由基的解析势能函数. 物理学报, 2009, 58(8): 5329-5334. doi: 10.7498/aps.58.5329
    [10] 叶祥熙, 明辰, 胡蕴成, 宁西京. 体材料结晶能力的理论预测. 物理学报, 2009, 58(5): 3293-3301. doi: 10.7498/aps.58.3293
    [11] 王振宇, 唐昌建. 离子通道中环形束流分布与场解的自洽理论. 物理学报, 2007, 56(6): 3313-3317. doi: 10.7498/aps.56.3313
    [12] 吴越华, 夏钟福, 王飞鹏, 邱勋林. 充电栅压对聚四氟乙烯多孔膜驻极体储电能力的影响. 物理学报, 2003, 52(12): 3186-3190. doi: 10.7498/aps.52.3186
    [13] 郭红, 李高翔, 彭金生. 双通道离化系统的相干控制. 物理学报, 2002, 51(11): 2517-2523. doi: 10.7498/aps.51.2517
    [14] 陈光. 均匀密度零压星的完整的引力解. 物理学报, 2002, 51(1): 197-200. doi: 10.7498/aps.51.197
    [15] 何一平, 陈德明, 刘永贵, 李传胪. 带Wiggler场平板型部分填充介质CFEL的切仑柯夫自由电子激光的动力学耦合模理论. 物理学报, 1993, 42(6): 935-939. doi: 10.7498/aps.42.935
    [16] 王根苗, 陈慧余, 汪卫华, 董远达. 机械合金化与FexAl100-x非晶态粉末的形成能力. 物理学报, 1990, 39(9): 1413-1417. doi: 10.7498/aps.39.1413
    [17] 熊诗杰, 蔡建华. 非均匀无序系统中Anderson局域化的标度理论——实空间重整化群途径. 物理学报, 1985, 34(12): 1530-1538. doi: 10.7498/aps.34.1530
    [18] 秦运文. 非均匀等离子体湍流的重正化准线性理论——Misguich-Balescu理论的推广. 物理学报, 1984, 33(1): 25-36. doi: 10.7498/aps.33.25
    [19] 邱孝明. 非均匀等离子体湍流的重正化准线性理论(Ⅱ)——湍性等离子体中的共振扩散. 物理学报, 1980, 29(9): 1104-1109. doi: 10.7498/aps.29.1104
    [20] 邱孝明. 非均匀等离子体湍流的重正化准线性理论(Ⅰ)——Misguich-Balescu理论的推广. 物理学报, 1980, 29(9): 1093-1103. doi: 10.7498/aps.29.1093
计量
  • 文章访问数:  6196
  • PDF下载量:  7312
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-10
  • 修回日期:  2015-01-05
  • 刊出日期:  2015-07-05

/

返回文章
返回