搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ce3+掺杂SiO2-Al2O3-Gd2O3玻璃的闪烁性能

刘力挽 周秦岭 邵冲云 张瑜 胡丽丽 杨秋红 陈丹平

引用本文:
Citation:

Ce3+掺杂SiO2-Al2O3-Gd2O3玻璃的闪烁性能

刘力挽, 周秦岭, 邵冲云, 张瑜, 胡丽丽, 杨秋红, 陈丹平

Scintillation properties of Ce3+ doped SiO2-Al2O3-Gd2O3 glass

Liu Li-Wan, Zhou Qin-Ling, Shao Chong-Yun, Zhang Yu, Hu Li-Li, Yang Qiu-Hong, Chen Dan-Ping
PDF
导出引用
  • 通常, Ce离子掺杂的低密度玻璃有较高的发光效率, 而高密度的Ce离子掺杂玻璃其发光效率很低. 为了解释这一现象, 采用高温熔融法获得了SiO2-Al2O3-Gd2O3三元系统的玻璃形成区, 并在还原气氛下制备了Ce3+掺杂SiO2-Al2O3-Gd2O3以及SiO2-Al2O3-Gd2O3-Ln2O3 (Ln=Y, La, Lu)闪烁玻璃, 研究了其光谱和闪烁性能. 测试结果显示: 随着Gd2O3含量增加, 玻璃紫外截止波长发生红移, 荧光强度降低, 衰减时间缩短; 加入Lu2O3, La2O3, Y2O3后, 紫外截止波长发生红移, 荧光强度降低, 衰减时间变短; 当Gd2O3超过10% mol时, X射线荧光积分光产额从相当于锗酸铋 晶体的61%降低到13%. 荧光强度降低、衰减时间缩短的原因是随着玻璃的紫外截止波长红移玻璃的能带宽度变窄, 使得Ce3+离子的d电子轨道开始接近玻璃的导带, Ce3+离子受辐射后跃迁到d电子轨道的电子会通过导带与玻璃中的空穴复合, 产生电荷迁移猝灭效应.
    Scintillation glass is an attractive material due to its many advantages including low-cost and easy-manufacturing compared with single crystal. However the low density of glass scintillator restricts its applications. The introduction of heavy components such as PbO and Bi2O3 allows the density of the glass to be easily increased to more than 6.0 g/cm3 which is desirable for most applications. However, it is usually accompanied with a dramatic decrease in the luminescence response of Ce3+ ions. Although Gd2O3 based glass has a relatively high light yield, it is far below the high silica glass. In order to explain why the luminescent efficiency of Ce3+ doped glass with low density is high while that with high density is low, a glass-forming region of SiO2-Al2O3-Gd2O3 ternary system is achieved by high-temperature melt-quenching method. Ce3+doped SiO2-Al2O3-Gd2O3 and SiO2-Al2O3-Gd2O3-Ln2O3 (Ln=Y, La, Lu) scintillation glasses are prepared at reducing atmosphere. Their optical and scintillation properties are investigated. The results show that the content of Gd2O3 can reach as high as 30% mol without phase separation. In addition, the UV cut-off position is red-shifted, PL intensity decreases and decay time reduces from 70 to 37.6 ns with increasing the Gd2O3 concentration. After Lu2O3, La2O3, Y2O3 are added in the glass, the UV cut-off position is red-shifted and PL intensity decreases. Moreover the UV cut-off position is in the order of La>Y>Lu and the decay time is in the order of La2O3 is more than 10% mol, X-ray excited luminescence light emission intensity reduces from 61% of BGO to 13% of BGO. With the UV cut-off position red-shifted, the bandgap of glass becomes narrow, resulting in the 5 d level of Ce3+ ions gradually approaching to the conduction band and the 5 d electrons easily combining with the holes in the glass through the conduction band. Namely, charge transferring quenching occurs. This is the reason why the PL intensity and decay time both decrease. It can also explain why the luminescent efficiency of Ce3+ doped glass with low density is high while that with high density is low.
    • 基金项目: 国家自然科学基金(批准号: 51272262, 61405215)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51272262, 61405215).
    [1]

    Xie J J, Yang P Z, Liao J Y 2005 J. Inorg. Mater. 20 522 (in Chinese) [谢建军, 杨培志, 廖晶莹 2005 无机材料学报 20 522]

    [2]

    Weber M J 2002 J. Lumin. 100 35

    [3]

    He W, Zhang Y P, Wang J H, Wang S X, Xia H P 2011 Acta Phys. Sin. 60 042901 (in Chinese) [何伟, 张约品, 王金浩, 王实现, 夏海平 2011 物理学报 60 042901]

    [4]

    Ginther R J, Schulmian J H 1958 IEEE. Trans. Nucl. Sci. 5 92

    [5]

    Chewpraditkul W, Shen Y L, Chen D P, Yu B K, Prusa P, Nikl M, Beitlerova A, Wanarak C 2012 Opt. Mater. 34 1762

    [6]

    Fu J, Kobayashi M, Sugimoto S, Parker J M 2008 Mater. Res. Bull. 128 99

    [7]

    Chewpraditkul W, He X, Chen D P, Shen, Y L, Sheng Q C, Yu B K, Nikl M, Kucerkova R, Beitlerova A, Wanarak C 2011 Phys. Status Solidi A 208 2830

    [8]

    Zhou W C 1996 J. Non-Cryst. Solids 201 256

    [9]

    Bei J F, Qian G J, Liang X L, Yuan S L, Yang Y X, Chen G R 2007 Mater. Res. Bull. 42 1195

    [10]

    Tang C M, Liu S, Liu L W, Chen D P 2015 J. Lumin. 160 317

    [11]

    Dimitrov V, Sakka S 1996 J. Appl. Phys. 79 1736

    [12]

    Zhao X Y, Wang X L, Lin H, Wang Z Q 2007 Physica B 392 132

    [13]

    Tang C M, Shen Y L, Sheng Q C, Liu S, Li W T, Wang L F, Chen D P 2013 Acta Phys. Sin. 62 247804 (in Chinese) [唐春梅, 沈应龙, 盛秋春, 刘双, 李文涛, 王龙飞, 陈丹平 2013 物理学报 62 247804]

    [14]

    Yang B, Zhang Y P, Xu B, Lai F, Xia H P, Zhao T C 2012 Acta Phys. Sin. 61 192901 (in Chinese) [杨斌, 张约品, 徐波, 来飞, 夏海平, 赵天池 2012 物理学报 61 192901]

    [15]

    Blasse G, Schipper W, Hamelink J J 1991 Inorg. Chim. Acta 189 77

    [16]

    Fu J, Parker J M, Brown R M, Flower P S 2003 J. Non-Cryst.Solids 326-327 335

  • [1]

    Xie J J, Yang P Z, Liao J Y 2005 J. Inorg. Mater. 20 522 (in Chinese) [谢建军, 杨培志, 廖晶莹 2005 无机材料学报 20 522]

    [2]

    Weber M J 2002 J. Lumin. 100 35

    [3]

    He W, Zhang Y P, Wang J H, Wang S X, Xia H P 2011 Acta Phys. Sin. 60 042901 (in Chinese) [何伟, 张约品, 王金浩, 王实现, 夏海平 2011 物理学报 60 042901]

    [4]

    Ginther R J, Schulmian J H 1958 IEEE. Trans. Nucl. Sci. 5 92

    [5]

    Chewpraditkul W, Shen Y L, Chen D P, Yu B K, Prusa P, Nikl M, Beitlerova A, Wanarak C 2012 Opt. Mater. 34 1762

    [6]

    Fu J, Kobayashi M, Sugimoto S, Parker J M 2008 Mater. Res. Bull. 128 99

    [7]

    Chewpraditkul W, He X, Chen D P, Shen, Y L, Sheng Q C, Yu B K, Nikl M, Kucerkova R, Beitlerova A, Wanarak C 2011 Phys. Status Solidi A 208 2830

    [8]

    Zhou W C 1996 J. Non-Cryst. Solids 201 256

    [9]

    Bei J F, Qian G J, Liang X L, Yuan S L, Yang Y X, Chen G R 2007 Mater. Res. Bull. 42 1195

    [10]

    Tang C M, Liu S, Liu L W, Chen D P 2015 J. Lumin. 160 317

    [11]

    Dimitrov V, Sakka S 1996 J. Appl. Phys. 79 1736

    [12]

    Zhao X Y, Wang X L, Lin H, Wang Z Q 2007 Physica B 392 132

    [13]

    Tang C M, Shen Y L, Sheng Q C, Liu S, Li W T, Wang L F, Chen D P 2013 Acta Phys. Sin. 62 247804 (in Chinese) [唐春梅, 沈应龙, 盛秋春, 刘双, 李文涛, 王龙飞, 陈丹平 2013 物理学报 62 247804]

    [14]

    Yang B, Zhang Y P, Xu B, Lai F, Xia H P, Zhao T C 2012 Acta Phys. Sin. 61 192901 (in Chinese) [杨斌, 张约品, 徐波, 来飞, 夏海平, 赵天池 2012 物理学报 61 192901]

    [15]

    Blasse G, Schipper W, Hamelink J J 1991 Inorg. Chim. Acta 189 77

    [16]

    Fu J, Parker J M, Brown R M, Flower P S 2003 J. Non-Cryst.Solids 326-327 335

  • [1] 魏坤, 黑东炜, 刘军, 徐青, 翁秀峰, 谭新建. 基于载流子猝灭模型的闪烁体发光非线性效应理论分析及实验验证. 物理学报, 2021, 70(24): 242901. doi: 10.7498/aps.70.20210820
    [2] 赵旺, 平兆艳, 郑庆华, 周薇薇. 白光发光二极管用SrGdLiTeO6:Eu3+红色荧光粉的浓度猝灭和温度猝灭行为. 物理学报, 2018, 67(24): 247801. doi: 10.7498/aps.67.20181523
    [3] 闻平. 玻璃形成体系中的β弛豫. 物理学报, 2017, 66(17): 176407. doi: 10.7498/aps.66.176407
    [4] 陈乔乔, 戴能利, 刘自军, 褚应波, 李进延, 杨旅云. 不同激发波长下Ce3+-Tb3+-Sm3+共掺白光玻璃的发光性能. 物理学报, 2014, 63(7): 077803. doi: 10.7498/aps.63.077803
    [5] 任国浩, 裴钰, 吴云涛, 陈晓峰, 李焕英, 潘尚可. 铈离子掺杂浓度对氯化镧(LaCl3:Ce)闪烁晶体发光性能的影响. 物理学报, 2014, 63(3): 037802. doi: 10.7498/aps.63.037802
    [6] 唐春梅, 沈应龙, 盛秋春, 刘双, 李文涛, 王龙飞, 陈丹平. Eu掺杂的高Gd玻璃荧光及闪烁发光性能研究. 物理学报, 2013, 62(24): 247804. doi: 10.7498/aps.62.247804
    [7] 王森, 周亚训, 戴世勋, 王训四, 沈祥, 陈飞飞, 徐星辰. Er3+/Ce3+共掺碲铋酸盐玻璃的制备及光谱特性提高研究. 物理学报, 2012, 61(10): 107802. doi: 10.7498/aps.61.107802
    [8] 杨斌, 张约品, 徐波, 来飞, 夏海平, 赵天池. Ce3+ 掺杂高密度氧化物玻璃的闪烁性能研究. 物理学报, 2012, 61(19): 192901. doi: 10.7498/aps.61.192901
    [9] 何伟, 张约品, 王金浩, 王实现, 夏海平. Tb3+掺杂的氟氧碲酸盐玻璃发光性能. 物理学报, 2011, 60(4): 042901. doi: 10.7498/aps.60.042901
    [10] 危洪清, 李乡安, 龙志林, 彭建, 张平, 张志纯. 块体非晶合金的黏度与玻璃形成能力的关系. 物理学报, 2009, 58(4): 2556-2564. doi: 10.7498/aps.58.2556
    [11] 夏良斌, 欧阳晓平, 王群书, 康克军, 何小玲, 顾牡. 掺杂有机染料的铅锡氟磷酸闪烁玻璃及其在伽马激发下的发光. 物理学报, 2009, 58(2): 882-886. doi: 10.7498/aps.58.882
    [12] 韩 琳, 宋 峰, 邹昌光, 苏 静, 闫立华, 田建国, 张光寅. Tm3+离子掺杂的钨酸钇钠晶体中浓度猝灭效应的研究. 物理学报, 2007, 56(7): 4187-4193. doi: 10.7498/aps.56.4187
    [13] 俞 坚, 张金仓, 曹桂新, 王仕鹏, 敬 超, 曹世勋. 相分离Nd0.5Ca0.5MnO3体系的再入型自旋玻璃行为和电荷有序. 物理学报, 2006, 55(4): 1914-1920. doi: 10.7498/aps.55.1914
    [14] 夏明许, 孟庆格, 张曙光, 马朝利, 李建国. 金属玻璃形成液体的热力学特性. 物理学报, 2006, 55(12): 6543-6549. doi: 10.7498/aps.55.6543
    [15] 王仕鹏, 张金仓, 曹桂新, 俞 坚, 敬 超, 曹世勋. 半掺杂Sm0.5Ca0.5MnO3体系的电荷有序和再入型自旋玻璃行为. 物理学报, 2006, 55(1): 367-371. doi: 10.7498/aps.55.367
    [16] 李家成, 薛天锋, 范有余, 李顺光, 胡和方. Ce3+对Er3+/Yb3+共掺TeO2-WO3-ZnO玻璃发光性能的影响. 物理学报, 2006, 55(2): 923-928. doi: 10.7498/aps.55.923
    [17] 李 涛, 张勤远, 姜中宏. Ce3+对Er3+/Yb3+共掺氟磷酸盐玻璃光谱性质的影响. 物理学报, 2006, 55(8): 4298-4303. doi: 10.7498/aps.55.4298
    [18] 余 鹏, 白海洋, 汤美波, 王万录, 汪卫华. 具有优良玻璃形成能力添加Al的CuZr基大块金属玻璃. 物理学报, 2005, 54(7): 3284-3289. doi: 10.7498/aps.54.3284
    [19] 于春雷, 戴世勋, 周 刚, 张军杰, 胡丽丽, 姜中宏. 掺铒碲酸盐玻璃中的浓度猝灭机理研究. 物理学报, 2005, 54(8): 3894-3899. doi: 10.7498/aps.54.3894
    [20] 梁敬魁, 房长明, 黄清镇. NaBO2-B2O3体系玻璃的形成和晶化机制. 物理学报, 1990, 39(1): 129-137. doi: 10.7498/aps.39.129
计量
  • 文章访问数:  11286
  • PDF下载量:  263
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-29
  • 修回日期:  2015-04-24
  • 刊出日期:  2015-08-05

/

返回文章
返回