搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ce3+掺杂SiO2-Al2O3-Gd2O3玻璃的闪烁性能

刘力挽 周秦岭 邵冲云 张瑜 胡丽丽 杨秋红 陈丹平

引用本文:
Citation:

Ce3+掺杂SiO2-Al2O3-Gd2O3玻璃的闪烁性能

刘力挽, 周秦岭, 邵冲云, 张瑜, 胡丽丽, 杨秋红, 陈丹平

Scintillation properties of Ce3+ doped SiO2-Al2O3-Gd2O3 glass

Liu Li-Wan, Zhou Qin-Ling, Shao Chong-Yun, Zhang Yu, Hu Li-Li, Yang Qiu-Hong, Chen Dan-Ping
PDF
导出引用
  • 通常, Ce离子掺杂的低密度玻璃有较高的发光效率, 而高密度的Ce离子掺杂玻璃其发光效率很低. 为了解释这一现象, 采用高温熔融法获得了SiO2-Al2O3-Gd2O3三元系统的玻璃形成区, 并在还原气氛下制备了Ce3+掺杂SiO2-Al2O3-Gd2O3以及SiO2-Al2O3-Gd2O3-Ln2O3 (Ln=Y, La, Lu)闪烁玻璃, 研究了其光谱和闪烁性能. 测试结果显示: 随着Gd2O3含量增加, 玻璃紫外截止波长发生红移, 荧光强度降低, 衰减时间缩短; 加入Lu2O3, La2O3, Y2O3后, 紫外截止波长发生红移, 荧光强度降低, 衰减时间变短; 当Gd2O3超过10% mol时, X射线荧光积分光产额从相当于锗酸铋 晶体的61%降低到13%. 荧光强度降低、衰减时间缩短的原因是随着玻璃的紫外截止波长红移玻璃的能带宽度变窄, 使得Ce3+离子的d电子轨道开始接近玻璃的导带, Ce3+离子受辐射后跃迁到d电子轨道的电子会通过导带与玻璃中的空穴复合, 产生电荷迁移猝灭效应.
    Scintillation glass is an attractive material due to its many advantages including low-cost and easy-manufacturing compared with single crystal. However the low density of glass scintillator restricts its applications. The introduction of heavy components such as PbO and Bi2O3 allows the density of the glass to be easily increased to more than 6.0 g/cm3 which is desirable for most applications. However, it is usually accompanied with a dramatic decrease in the luminescence response of Ce3+ ions. Although Gd2O3 based glass has a relatively high light yield, it is far below the high silica glass. In order to explain why the luminescent efficiency of Ce3+ doped glass with low density is high while that with high density is low, a glass-forming region of SiO2-Al2O3-Gd2O3 ternary system is achieved by high-temperature melt-quenching method. Ce3+doped SiO2-Al2O3-Gd2O3 and SiO2-Al2O3-Gd2O3-Ln2O3 (Ln=Y, La, Lu) scintillation glasses are prepared at reducing atmosphere. Their optical and scintillation properties are investigated. The results show that the content of Gd2O3 can reach as high as 30% mol without phase separation. In addition, the UV cut-off position is red-shifted, PL intensity decreases and decay time reduces from 70 to 37.6 ns with increasing the Gd2O3 concentration. After Lu2O3, La2O3, Y2O3 are added in the glass, the UV cut-off position is red-shifted and PL intensity decreases. Moreover the UV cut-off position is in the order of La>Y>Lu and the decay time is in the order of La2O3 is more than 10% mol, X-ray excited luminescence light emission intensity reduces from 61% of BGO to 13% of BGO. With the UV cut-off position red-shifted, the bandgap of glass becomes narrow, resulting in the 5 d level of Ce3+ ions gradually approaching to the conduction band and the 5 d electrons easily combining with the holes in the glass through the conduction band. Namely, charge transferring quenching occurs. This is the reason why the PL intensity and decay time both decrease. It can also explain why the luminescent efficiency of Ce3+ doped glass with low density is high while that with high density is low.
    • 基金项目: 国家自然科学基金(批准号: 51272262, 61405215)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51272262, 61405215).
    [1]

    Xie J J, Yang P Z, Liao J Y 2005 J. Inorg. Mater. 20 522 (in Chinese) [谢建军, 杨培志, 廖晶莹 2005 无机材料学报 20 522]

    [2]

    Weber M J 2002 J. Lumin. 100 35

    [3]

    He W, Zhang Y P, Wang J H, Wang S X, Xia H P 2011 Acta Phys. Sin. 60 042901 (in Chinese) [何伟, 张约品, 王金浩, 王实现, 夏海平 2011 物理学报 60 042901]

    [4]

    Ginther R J, Schulmian J H 1958 IEEE. Trans. Nucl. Sci. 5 92

    [5]

    Chewpraditkul W, Shen Y L, Chen D P, Yu B K, Prusa P, Nikl M, Beitlerova A, Wanarak C 2012 Opt. Mater. 34 1762

    [6]

    Fu J, Kobayashi M, Sugimoto S, Parker J M 2008 Mater. Res. Bull. 128 99

    [7]

    Chewpraditkul W, He X, Chen D P, Shen, Y L, Sheng Q C, Yu B K, Nikl M, Kucerkova R, Beitlerova A, Wanarak C 2011 Phys. Status Solidi A 208 2830

    [8]

    Zhou W C 1996 J. Non-Cryst. Solids 201 256

    [9]

    Bei J F, Qian G J, Liang X L, Yuan S L, Yang Y X, Chen G R 2007 Mater. Res. Bull. 42 1195

    [10]

    Tang C M, Liu S, Liu L W, Chen D P 2015 J. Lumin. 160 317

    [11]

    Dimitrov V, Sakka S 1996 J. Appl. Phys. 79 1736

    [12]

    Zhao X Y, Wang X L, Lin H, Wang Z Q 2007 Physica B 392 132

    [13]

    Tang C M, Shen Y L, Sheng Q C, Liu S, Li W T, Wang L F, Chen D P 2013 Acta Phys. Sin. 62 247804 (in Chinese) [唐春梅, 沈应龙, 盛秋春, 刘双, 李文涛, 王龙飞, 陈丹平 2013 物理学报 62 247804]

    [14]

    Yang B, Zhang Y P, Xu B, Lai F, Xia H P, Zhao T C 2012 Acta Phys. Sin. 61 192901 (in Chinese) [杨斌, 张约品, 徐波, 来飞, 夏海平, 赵天池 2012 物理学报 61 192901]

    [15]

    Blasse G, Schipper W, Hamelink J J 1991 Inorg. Chim. Acta 189 77

    [16]

    Fu J, Parker J M, Brown R M, Flower P S 2003 J. Non-Cryst.Solids 326-327 335

  • [1]

    Xie J J, Yang P Z, Liao J Y 2005 J. Inorg. Mater. 20 522 (in Chinese) [谢建军, 杨培志, 廖晶莹 2005 无机材料学报 20 522]

    [2]

    Weber M J 2002 J. Lumin. 100 35

    [3]

    He W, Zhang Y P, Wang J H, Wang S X, Xia H P 2011 Acta Phys. Sin. 60 042901 (in Chinese) [何伟, 张约品, 王金浩, 王实现, 夏海平 2011 物理学报 60 042901]

    [4]

    Ginther R J, Schulmian J H 1958 IEEE. Trans. Nucl. Sci. 5 92

    [5]

    Chewpraditkul W, Shen Y L, Chen D P, Yu B K, Prusa P, Nikl M, Beitlerova A, Wanarak C 2012 Opt. Mater. 34 1762

    [6]

    Fu J, Kobayashi M, Sugimoto S, Parker J M 2008 Mater. Res. Bull. 128 99

    [7]

    Chewpraditkul W, He X, Chen D P, Shen, Y L, Sheng Q C, Yu B K, Nikl M, Kucerkova R, Beitlerova A, Wanarak C 2011 Phys. Status Solidi A 208 2830

    [8]

    Zhou W C 1996 J. Non-Cryst. Solids 201 256

    [9]

    Bei J F, Qian G J, Liang X L, Yuan S L, Yang Y X, Chen G R 2007 Mater. Res. Bull. 42 1195

    [10]

    Tang C M, Liu S, Liu L W, Chen D P 2015 J. Lumin. 160 317

    [11]

    Dimitrov V, Sakka S 1996 J. Appl. Phys. 79 1736

    [12]

    Zhao X Y, Wang X L, Lin H, Wang Z Q 2007 Physica B 392 132

    [13]

    Tang C M, Shen Y L, Sheng Q C, Liu S, Li W T, Wang L F, Chen D P 2013 Acta Phys. Sin. 62 247804 (in Chinese) [唐春梅, 沈应龙, 盛秋春, 刘双, 李文涛, 王龙飞, 陈丹平 2013 物理学报 62 247804]

    [14]

    Yang B, Zhang Y P, Xu B, Lai F, Xia H P, Zhao T C 2012 Acta Phys. Sin. 61 192901 (in Chinese) [杨斌, 张约品, 徐波, 来飞, 夏海平, 赵天池 2012 物理学报 61 192901]

    [15]

    Blasse G, Schipper W, Hamelink J J 1991 Inorg. Chim. Acta 189 77

    [16]

    Fu J, Parker J M, Brown R M, Flower P S 2003 J. Non-Cryst.Solids 326-327 335

计量
  • 文章访问数:  9097
  • PDF下载量:  240
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-29
  • 修回日期:  2015-04-24
  • 刊出日期:  2015-08-05

/

返回文章
返回