搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

红外波长上转换器件中载流子阻挡结构的研究

康健彬 郝智彪 王磊 刘志林 罗毅 汪莱 王健 熊兵 孙长征 韩彦军 李洪涛 王禄 王文新 陈弘

引用本文:
Citation:

红外波长上转换器件中载流子阻挡结构的研究

康健彬, 郝智彪, 王磊, 刘志林, 罗毅, 汪莱, 王健, 熊兵, 孙长征, 韩彦军, 李洪涛, 王禄, 王文新, 陈弘

Studies on carrier-blocking structures for up-conversion infrared photodetectors

Kang Jian-Bin, Hao Zhi-Biao, Wang Lei, Liu Zhi-Lin, Luo Yi, Wang Lai, Wang Jian, Xiong Bing, Sun Chang-Zheng, Han Yan-Jun, Li Hong-Tao, Wang Lu, Wang Wen-Xin, Chen Hong
PDF
导出引用
  • 复杂半导体材料结构中的载流子分布特性对器件性能有重要影响. 本文针对一种新型的波长上转换红外探测器, 研究了载流子阻挡结构对载流子分布和器件特性的影响. 论文通过自洽求解薛定谔方程、泊松方程、电流连续性方程和载流子速率方程分析了不同器件结构中的空穴分布. 同时, 生长了相应结构的外延材料, 并通过电致荧光谱分析了载流子阻挡结构对器件特性的影响. 结果表明, 2 nm厚的AlAs势垒层既能有效阻挡空穴又不影响电子输运, 有利于制作波长上转换红外探测器. 此外, 论文分析了阻挡势垒层的厚度和高度以及工作温度对载流子分布的影响. 本文研究结果亦可应用于其他载流子非均匀分布的半导体器件.
    Infrared (IR) photodetectors have been widely used in the fields of both civil and military applications such as environmental monitoring, medical diagnostics, satellite remote sensing and missile guidance, etc. In conventional large scale focal plane array (FPA) IR imaging, the thermal mismatch between IR photodetectors and silicon readout circuits will inevitably lead to the degradation of the device performance. An up-conversion IR photodetector, which converts IR photons to short-wavelength photons for Si-CCD-based imaging, can avoid thermal mismatch caused by hybridization with silicon readout circuits, resulting in a low-cost way for large array IR imaging. The operation principle of the semiconductor up-conversion IR photodetector is based on electron transitions and carrier transportation in different functional sections including absorption section, transportation section and emission section, hence the carrier distribution in the device structure has a crucial influence on the device performance. In order to achieve low dark current, carriers are expected to be non-uniformly distributed in the up-conversion device structure. Designing and optimizing the carrier-blocking structure are usually the key issues to acquire inhomogeneous carrier distribution. In this paper, up-conversion infrared photodetectors with various hole-blocking structures are investigated both theoretically and experimentally. Firstly the carrier distributions are calculated by self-consistently solving the Schr?dinger equation, Poisson equation, current continuity equation and carrier rate equation. Then the influence of the carrierblocking structure on the device performance is analyzed by electroluminescence measurements on the corresponding epitaxial structures. According to the theoretical and experimental results, it is found that a 2-nm-thick AlAs barrier layer can block holes effectively without hampering the electron transportation, which is necessary for the up-conversion infrared photodetectors. However, other attempts to block holes, such as light n-doping in the transportation section or lowering the injection barrier, do not work well. In addition, the influences of the thickness and height of the blocking barrier and the operation temperature on the carrier distributions are also studied. When the thickness of the blocking barrier is less than 2 nm, the thicker or the higher is the barrier, the better is the blocking effect. However, when the thickness of the blocking barrier is larger than 2 nm, the blocking effect is not persistently enhanced with increasing thickness because the tunneling process is almost fully suppressed. Furthermore, with the same blocking barrier parameters, lowering the operation temperature can lead to better blocking effect. This work demonstrates the utilization and effect of carrier-blocking structures in semiconductor devices which deamnd an inhomogeneous carrier distribution.
      通信作者: 郝智彪, zbhao@tsinghua.edu.cn;luoy@tsinghua.edu.cn ; 罗毅, zbhao@tsinghua.edu.cn;luoy@tsinghua.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2013CB632804, 2012CB315605), 国家自然科学基金(批准号: 61176015, 61210014, 51002085, 61321004, 61307024, 61176059)和国家高技术研究发展计划(批准号: 2012AA050601)资助的课题.
      Corresponding author: Hao Zhi-Biao, zbhao@tsinghua.edu.cn;luoy@tsinghua.edu.cn ; Luo Yi, zbhao@tsinghua.edu.cn;luoy@tsinghua.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2013CB632804, 2012CB315605), the National Natural Science Foundation of China (Grant Nos. 61176015, 61210014, 51002085, 61321004, 61307024, 61176059), and the High Technology Research and Development Program of China (Grant No. 2012AA050601).
    [1]

    Yang Y, Liu H C, Hao M R, Shen W Z 2011 J. Appl. Phys. 110 074501

    [2]

    Izhnin I I, Dvoretsky S A, Mynbaev K D, Fitsych O I, Mikhailov N N, Varavin V S, Pociask-Bialy M, Voitsekhovskii A V, Sheregii E 2014 J. Appl. Phys. 115 163501

    [3]

    Martin Walther, Robert Rehm, Johannes Schmitz, Jasmin Niemasz, Frank Rutz, Andreas Wörl, Lutz Kirste, Ralf Scheibner, Joachim Wendler, Johann Ziegler 2011 Proc. of SPIE 7945 79451N

    [4]

    Xu W L, Xiong D Y, Li N, Zhen H L, Li Z F, Lu W 2007 Acta Phys. Sin. 56 5424 (in Chinese) [徐文兰, 熊大元, 李宁, 甄红楼, 李志锋, 陆卫 2007 物理学报 56 5424]

    [5]

    Luo Y, Hao Z B, Wang L, Kang J B, Wang L 2011 CN patent ZL 201110438999.4 (in Chinese) [罗毅, 郝智彪, 王磊, 康健彬, 汪莱 2011 中国专利 ZL 201110438999.4]

    [6]

    Fabrizio Giorgetta R, Esther Baumann, Marcel Graf, Quankui Yang, Christian Manz, Klaus Köhler, Harvey Beere E, David Ritchie A, Edmund Linfield, Alexander Davies G, Yuriy Fedoryshyn, Heinz Jäckel, Milan Fischer, Jérôme Faist, Daniel Hofstetter 2009 J. Quantum. Electron. 45 1039

    [7]

    Emmanuel Dupont, Byloos M, Gao M, Buchanan M, Song C Y, Wasilewski Z R, Liu H C 2002 IEEE Photon. Technol. Lett. 14 182

    [8]

    Ryzhii V, Liu H C 2002 J. Appl. Phys. 92 2354

    [9]

    Savich G R, Pedrazzani J R, Sidor D E, Maimon S, Wicks G W 2011 Appl. Phys. Lett. 99 121112

    [10]

    Harald Schnelder, Peter Koldl, Frank Fuchs, Bernhard Dlschler, Klaus Schwarz, John Ralston D 1991 Semicond. Sci. Technol. 6 C120

    [11]

    Hillmer H, Marcinkevicius S 1998 Appl. Phys. B 66 1

    [12]

    Koeniguer C, Dubois G, Gomez A, Berger V 2006 Phys. Rev. B 74 235325

    [13]

    Wang H X, Yin W 2008 Acta Phys. Sin. 57 2669 (in Chinese) [王海霞, 殷雯 2008 物理学报 57 2669]

    [14]

    Bhattacharya P, Zhang M, Hinckley J 2010 Appl. Phys. Lett. 97 251107

    [15]

    Jeremy Nicklas W, John Wilkins W 2010 Appl. Phys. Lett. 97 091902

  • [1]

    Yang Y, Liu H C, Hao M R, Shen W Z 2011 J. Appl. Phys. 110 074501

    [2]

    Izhnin I I, Dvoretsky S A, Mynbaev K D, Fitsych O I, Mikhailov N N, Varavin V S, Pociask-Bialy M, Voitsekhovskii A V, Sheregii E 2014 J. Appl. Phys. 115 163501

    [3]

    Martin Walther, Robert Rehm, Johannes Schmitz, Jasmin Niemasz, Frank Rutz, Andreas Wörl, Lutz Kirste, Ralf Scheibner, Joachim Wendler, Johann Ziegler 2011 Proc. of SPIE 7945 79451N

    [4]

    Xu W L, Xiong D Y, Li N, Zhen H L, Li Z F, Lu W 2007 Acta Phys. Sin. 56 5424 (in Chinese) [徐文兰, 熊大元, 李宁, 甄红楼, 李志锋, 陆卫 2007 物理学报 56 5424]

    [5]

    Luo Y, Hao Z B, Wang L, Kang J B, Wang L 2011 CN patent ZL 201110438999.4 (in Chinese) [罗毅, 郝智彪, 王磊, 康健彬, 汪莱 2011 中国专利 ZL 201110438999.4]

    [6]

    Fabrizio Giorgetta R, Esther Baumann, Marcel Graf, Quankui Yang, Christian Manz, Klaus Köhler, Harvey Beere E, David Ritchie A, Edmund Linfield, Alexander Davies G, Yuriy Fedoryshyn, Heinz Jäckel, Milan Fischer, Jérôme Faist, Daniel Hofstetter 2009 J. Quantum. Electron. 45 1039

    [7]

    Emmanuel Dupont, Byloos M, Gao M, Buchanan M, Song C Y, Wasilewski Z R, Liu H C 2002 IEEE Photon. Technol. Lett. 14 182

    [8]

    Ryzhii V, Liu H C 2002 J. Appl. Phys. 92 2354

    [9]

    Savich G R, Pedrazzani J R, Sidor D E, Maimon S, Wicks G W 2011 Appl. Phys. Lett. 99 121112

    [10]

    Harald Schnelder, Peter Koldl, Frank Fuchs, Bernhard Dlschler, Klaus Schwarz, John Ralston D 1991 Semicond. Sci. Technol. 6 C120

    [11]

    Hillmer H, Marcinkevicius S 1998 Appl. Phys. B 66 1

    [12]

    Koeniguer C, Dubois G, Gomez A, Berger V 2006 Phys. Rev. B 74 235325

    [13]

    Wang H X, Yin W 2008 Acta Phys. Sin. 57 2669 (in Chinese) [王海霞, 殷雯 2008 物理学报 57 2669]

    [14]

    Bhattacharya P, Zhang M, Hinckley J 2010 Appl. Phys. Lett. 97 251107

    [15]

    Jeremy Nicklas W, John Wilkins W 2010 Appl. Phys. Lett. 97 091902

  • [1] 邵光伟, 于瑞, 傅婷, 陈南梁, 刘向阳. 三氧化钨晶体拓扑结构生长行为及其电致变色性能. 物理学报, 2022, 71(2): 028201. doi: 10.7498/aps.71.20211555
    [2] 邵光伟, 于瑞, 傅婷, 陈南梁, 刘向阳. WO3晶体拓扑结构生长行为及其电致变色性能研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211555
    [3] 王谦, 刘卫国, 巩蕾, 王利国, 李亚清. 双波长自由载流子吸收技术测量半导体载流子体寿命和表面复合速率. 物理学报, 2018, 67(21): 217201. doi: 10.7498/aps.67.20181509
    [4] 刘顺瑞, 聂照庭, 张明磊, 王丽, 冷雁冰, 孙艳军. 利用纳米球提高红外波长上转换探测器效率. 物理学报, 2017, 66(18): 188501. doi: 10.7498/aps.66.188501
    [5] 王超, 郝智彪, 王磊, 康健彬, 谢莉莉, 罗毅, 汪莱, 王健, 熊兵, 孙长征, 韩彦军, 李洪涛, 王禄, 王文新, 陈弘. 利用表面微结构提高波长上转换红外探测器效率. 物理学报, 2016, 65(10): 108501. doi: 10.7498/aps.65.108501
    [6] 董丽芳, 李树峰, 范伟丽. 介质阻挡放电丝结构转变中的缺陷研究. 物理学报, 2011, 60(6): 065205. doi: 10.7498/aps.60.065205
    [7] 董丽芳, 杨玉杰, 刘为远, 岳晗, 王帅, 刘忠伟, 陈强. 不同电介质结构下介质阻挡放电特性研究. 物理学报, 2011, 60(2): 025216. doi: 10.7498/aps.60.025216
    [8] 卢宗贵, 刘红军, 景峰, 赵卫, 王屹山, 彭志涛. 基于自发参量下转换产生参量荧光的光谱分布特性理论分析. 物理学报, 2009, 58(7): 4689-4696. doi: 10.7498/aps.58.4689
    [9] 张进成, 郑鹏天, 董作典, 段焕涛, 倪金玉, 张金凤, 郝跃. 背势垒层结构对AlGaN/GaN双异质结载流子分布特性的影响. 物理学报, 2009, 58(5): 3409-3415. doi: 10.7498/aps.58.3409
    [10] 杨 华, 朱洪亮, 潘教青, 冯 文, 谢红云, 周 帆, 安 欣, 边 静, 赵玲娟, 陈娓兮, 王 圩. 采用单边大光腔结构改善电吸收调制器的光场分布. 物理学报, 2007, 56(5): 2751-2755. doi: 10.7498/aps.56.2751
    [11] 贾新鸿, 钟东洲, 王 飞, 陈海涛. 基于λ/4相移分布反馈半导体激光器四波混频的THz波长转换特性研究. 物理学报, 2007, 56(5): 2637-2646. doi: 10.7498/aps.56.2637
    [12] 尹增谦, 万景瑜, 黄明强, 王慧娟. 介质阻挡放电中的能量转换过程研究. 物理学报, 2007, 56(12): 7078-7083. doi: 10.7498/aps.56.7078
    [13] 王 健, 孙军强, 郭永娟, 李 婧, 孙琪真. 新型双环腔结构可调谐全光波长转换器的实验研究. 物理学报, 2007, 56(6): 3251-3254. doi: 10.7498/aps.56.3251
    [14] 方 健, 林 薇, 周贤达, 李肇基. 非均匀寿命分布电导调制基区中非平衡载流子的WKB解. 物理学报, 2006, 55(7): 3360-3362. doi: 10.7498/aps.55.3360
    [15] 邵嘉平, 胡 卉, 郭文平, 汪 莱, 罗 毅, 孙长征, 郝智彪. 高In组分InxGa1-xN/GaN多量子阱材料电致荧光谱的研究. 物理学报, 2005, 54(8): 3905-3909. doi: 10.7498/aps.54.3905
    [16] 徐 帆, 张新亮, 黄德修. 新型结构可调谐全光波长转换器的理论与实验研究. 物理学报, 2004, 53(7): 2165-2169. doi: 10.7498/aps.53.2165
    [17] 黄绮, 周均铭, 贾惟义, 程文芹, 王彦云. 分子束外延调制掺杂结构的低温光致荧光. 物理学报, 1987, 36(2): 165-171. doi: 10.7498/aps.36.165
    [18] 彭金生. 双光子共振荧光分布. 物理学报, 1986, 35(6): 788-791. doi: 10.7498/aps.35.788
    [19] 王渭源, 夏冠群, 卢建国, 邵永富, 乔墉. 掺Cr半绝缘GaAs中Si离子注入的载流子分布尾研究. 物理学报, 1985, 34(3): 402-407. doi: 10.7498/aps.34.402
    [20] 陈开茅, 秦国刚, 王忠安, 金泗轩. 消除载流子分布的不均匀性的影响准确测量深中心俘获载流子的截面. 物理学报, 1984, 33(4): 486-495. doi: 10.7498/aps.33.486
计量
  • 文章访问数:  5499
  • PDF下载量:  222
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-03
  • 修回日期:  2015-04-13
  • 刊出日期:  2015-09-05

/

返回文章
返回