搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微波低通高阻复合材料构件的设计与性能验证

黄大庆 康飞宇 周卓辉 刘翔 程红飞

引用本文:
Citation:

微波低通高阻复合材料构件的设计与性能验证

黄大庆, 康飞宇, 周卓辉, 刘翔, 程红飞

Design and verification of microwave low frequency band-pass and high frequency band-stop composite structure

Huang Da-Qing, Kang Fei-Yu, Zhou Zhuo-Hui, Liu Xiang, Cheng Hong-Fei
PDF
导出引用
  • 随着海洋环境武器装备隐身发展的需要, 开展具有微波低通高阻特性的复合材料构件设计与研究显得重要而迫切. 文章首先设计了一种中空六边形周期性结构, 以此为基础设计了一个由面层、中空六边形环周期层1、中间层、中空六边形环周期层2、面层组成的新型复合双层频率选择表面(FSS)结构件. 其上层FSS的结构参数为中空六边形环边长3.0 mm, 线宽度0.5 mm, 缝隙宽度0.4 mm; 下层FSS的结构参数为中空六边形环的边长3.2 mm, 线宽度0.5 mm, 缝隙宽度1.0 mm. 模拟结果表明: 该复合材料构件具备优良的低频透过性与高频屏蔽性快速转换的特性, 能够获得优异的低通高阻性能, 同时在45°范围内具备优良的角度不敏感性. 最后制备和实验验证得到了0–2 GHz低频段具有95.6%高透过性、同时在7.05–18 GHz高频段具有10 dB 以上屏蔽性能的复合材料构件, 对具有隐身特性的新型滤波电磁功能构件的研制具有重要价值.
    It is important and urgent to develop microwave low frequency band-pass and high frequency band-stop composite structures according to the needs of marine environment stealth weapons and equipment constructions. In this paper, a hollow hexagonal periodic structure is originally designed and the microwave band-pass and band-stop characteristics are investigated through the CST software simulation. As an optimization result, the numerical periodic structure parameters of hexagon ring are as follows: hexagon ring side length is 2.7 mm, line width 0.5 mm and gap width 0.15 mm, which shows a transmission of 83% at 0-2 GHz, and meanwhile a shielding efficiency of more than 10 dB at 8-18 GHz, thereby basically justifying our design target. On this basis, a new type of double-layers' composite frequency selective surface (FSS) structure which is composed of facial layer, hollow hexagon ring array 1, middle spacer layer, hollow hexagon ring array 2 and another facial layer stacked layer by layer, is creatively designed, which displays excellent microwave low frequency band-pass and high frequency band-stop performances compared with a single layer hollow hexagonal periodic structure, and by simulation and optimization, structural parameters of the upper FSS structure are as follows: hexagon ring side length is 3.0 mm, line width 0.5 mm, gap width 0.4 mm, and the lower FSS structure parameters are as follows: hexagon ring side length is 3.2 mm, line width 0.5 mm, gap width 1.0 mm; simulation results show itself that dual different layers' FSS design presents itself excellent low frequency band-pass and high frequency band-stop transformation characteristics, and the fast switch capacity is the basic foundation for both excellent low frequency band-pass and outstanding high frequency band-stop characteristics. The effects of wave incidence angle (TE) on electrical performance of dual-layers FSS are investigated and the results indicate that the designed dual-layers' FSS possesses a wide angle insensitivity in a range of 0-45°, which is especially beneficial to engineering applications. Finally the composite structures with dual-layers' FSSs are manufactured and verified, and high transmission up to 95.6% at 0-2 GHz frequency band and more than 10 dB shielding efficiency at 7.05-18 GHz are obtained, which strongly testifies our design idea and has important significance for developing the high performance band-pass and band-stop composite structure and new electromagnetic functional composite materials.
      通信作者: 黄大庆, hdqbiam@163.com
    • 基金项目: 北京市科委重大研究项目(批准号: D14110300240000)资助的课题.
      Corresponding author: Huang Da-Qing, hdqbiam@163.com
    • Funds: Project supported by the major program of the Beijing Municipal Science and Technology Commission (Grant No. D14110300240000).
    [1]

    Munk B A 2000 Frequency Selective Surface Theory and Design (New York: Wiley Press)

    [2]

    Zhang T, Yang G, Li W 2010 Antennas Propagation and EM Theory (ISAPE), 2010 9th International Symposium on. IEEE, Guangzhou, 2010 p932

    [3]

    Zhang J, Gao J S, Xu N X, Yu M 2015 Acta Phys. Sin. 64 067302(in Chinese) [张建, 高劲松, 徐念喜, 于淼 2015 物理学报 64 067302]

    [4]

    Joumayly M A, Behdad N 2010 Antennas and Propagation, IEEE Transactions on 58 4033

    [5]

    Wang X Z, Gao J S, Xu N X, Liu H 2014 Chin. Phys. B 23 047303

    [6]

    Salehi M, Behdad N 2008 Microwave and Wireless Components Letters IEEE 18 785

    [7]

    Li M, Behdad N 2013 Antennas and Propagation, IEEE Transactions On 61 677

    [8]

    Shi H Y, Li J X, Zhang A X, Wang J F, Xu Z 2014 Chin. Phys. B 23 118101

    [9]

    Wang Y S, Gao J S, Xu N X, Tang Y, Chen X 2014 Acta Phys. Sin. 63 078402(in Chinese) [王岩松, 高劲松, 徐念喜, 汤洋, 陈新 2014 物理学报 63 078402]

    [10]

    Yu M Xu N X, Gao J S 2015 Chin. Phys. B 24 030701

    [11]

    Li C, Jiang D, Zeng J, Xing S, Ju S 2014 Composites Sci. Technol. 90 32

    [12]

    Choi I, Lee D, Lee D G 2014 Composite Structures 117 98

    [13]

    Wang X Z 2014 Ph.D.Dissertation (Changchun: Changchun Institute of Optics, Fine Mechanics and Physics Chinese Academy of Sciences) (in Chinese) [王秀芝 2014 博士学位论文(长春: 中国科学院长春光学精密机械与物理研究所)]

    [14]

    Wu Z, Wu Z B 2005 Acta Electron. Sin. 33 517(in Chinese) [武哲, 武振波 2005 电子学报 33 517]

    [15]

    Lan F, Gao X, Qi L M 2014 Acta Phys. Sin. 63 104209(in Chinese) [兰峰, 高喜, 亓丽梅 2014 物理学报 63 104209]

  • [1]

    Munk B A 2000 Frequency Selective Surface Theory and Design (New York: Wiley Press)

    [2]

    Zhang T, Yang G, Li W 2010 Antennas Propagation and EM Theory (ISAPE), 2010 9th International Symposium on. IEEE, Guangzhou, 2010 p932

    [3]

    Zhang J, Gao J S, Xu N X, Yu M 2015 Acta Phys. Sin. 64 067302(in Chinese) [张建, 高劲松, 徐念喜, 于淼 2015 物理学报 64 067302]

    [4]

    Joumayly M A, Behdad N 2010 Antennas and Propagation, IEEE Transactions on 58 4033

    [5]

    Wang X Z, Gao J S, Xu N X, Liu H 2014 Chin. Phys. B 23 047303

    [6]

    Salehi M, Behdad N 2008 Microwave and Wireless Components Letters IEEE 18 785

    [7]

    Li M, Behdad N 2013 Antennas and Propagation, IEEE Transactions On 61 677

    [8]

    Shi H Y, Li J X, Zhang A X, Wang J F, Xu Z 2014 Chin. Phys. B 23 118101

    [9]

    Wang Y S, Gao J S, Xu N X, Tang Y, Chen X 2014 Acta Phys. Sin. 63 078402(in Chinese) [王岩松, 高劲松, 徐念喜, 汤洋, 陈新 2014 物理学报 63 078402]

    [10]

    Yu M Xu N X, Gao J S 2015 Chin. Phys. B 24 030701

    [11]

    Li C, Jiang D, Zeng J, Xing S, Ju S 2014 Composites Sci. Technol. 90 32

    [12]

    Choi I, Lee D, Lee D G 2014 Composite Structures 117 98

    [13]

    Wang X Z 2014 Ph.D.Dissertation (Changchun: Changchun Institute of Optics, Fine Mechanics and Physics Chinese Academy of Sciences) (in Chinese) [王秀芝 2014 博士学位论文(长春: 中国科学院长春光学精密机械与物理研究所)]

    [14]

    Wu Z, Wu Z B 2005 Acta Electron. Sin. 33 517(in Chinese) [武哲, 武振波 2005 电子学报 33 517]

    [15]

    Lan F, Gao X, Qi L M 2014 Acta Phys. Sin. 63 104209(in Chinese) [兰峰, 高喜, 亓丽梅 2014 物理学报 63 104209]

  • [1] 王成蓉, 唐莉, 周艳萍, 赵翔, 刘长军, 闫丽萍. 透明可开关的超宽带频率选择表面电磁屏蔽研究. 物理学报, 2024, 73(12): 124201. doi: 10.7498/aps.73.20240339
    [2] 王东俊, 孙子涵, 张袁, 唐莉, 闫丽萍. 抗方阻波动的超宽带轻薄频率选择表面吸波体. 物理学报, 2024, 73(2): 024201. doi: 10.7498/aps.73.20231365
    [3] 周仕浩, 房欣宇, 李猛猛, 俞叶峰, 陈如山. S/X双频带吸波实时可调的吸波器. 物理学报, 2020, 69(20): 204101. doi: 10.7498/aps.69.20200606
    [4] 张建, 高劲松, 徐念喜, 于淼. 基于混合周期栅网结构的频率选择表面设计研究. 物理学报, 2015, 64(6): 067302. doi: 10.7498/aps.64.067302
    [5] 刘海文, 占昕, 任宝平. 射电天文用太赫兹三通带频率选择表面设计. 物理学报, 2015, 64(17): 174103. doi: 10.7498/aps.64.174103
    [6] 焦健, 高劲松, 徐念喜, 冯晓国, 胡海翔. 基于传递函数的频率选择表面集总参数研究. 物理学报, 2014, 63(13): 137301. doi: 10.7498/aps.63.137301
    [7] 王岩松, 高劲松, 徐念喜, 汤洋, 陈新. 具有陡降特性的新型混合单元频率选择表面. 物理学报, 2014, 63(7): 078402. doi: 10.7498/aps.63.078402
    [8] 袁子东, 高军, 曹祥玉, 杨欢欢, 杨群, 李文强, 商楷. 一种性能稳定的新型频率选择表面及其微带天线应用. 物理学报, 2014, 63(1): 014102. doi: 10.7498/aps.63.014102
    [9] 徐永顺, 别少伟, 江建军, 徐海兵, 万东, 周杰. 含螺旋单元频率选择表面的宽频带强吸收复合吸波体. 物理学报, 2014, 63(20): 205202. doi: 10.7498/aps.63.205202
    [10] 夏步刚, 张德海, 孟进, 赵鑫. 毫米波二阶分形频率选择表面寄生谐振的抑制. 物理学报, 2013, 62(17): 174103. doi: 10.7498/aps.62.174103
    [11] 王秀芝, 高劲松, 徐念喜. 利用集总LC元件实现频率选择表面极化分离的特性. 物理学报, 2013, 62(14): 147307. doi: 10.7498/aps.62.147307
    [12] 王秀芝, 高劲松, 徐念喜. Ku/Ka波段双通带频率选择表面设计研究. 物理学报, 2013, 62(16): 167307. doi: 10.7498/aps.62.167307
    [13] 焦健, 徐念喜, 冯晓国, 梁凤超, 赵晶丽, 高劲松. 基于互补屏的主动频率选择表面设计研究. 物理学报, 2013, 62(16): 167306. doi: 10.7498/aps.62.167306
    [14] 张建, 高劲松, 徐念喜. 光学透明频率选择表面的设计研究. 物理学报, 2013, 62(14): 147304. doi: 10.7498/aps.62.147304
    [15] 汪剑波, 卢俊. 双屏频率选择表面结构的遗传算法优化. 物理学报, 2011, 60(5): 057304. doi: 10.7498/aps.60.057304
    [16] 陈谦, 江建军, 别少伟, 王鹏, 刘鹏, 徐欣欣. 含有源频率选择表面可调复合吸波体. 物理学报, 2011, 60(7): 074202. doi: 10.7498/aps.60.074202
    [17] 高劲松, 王珊珊, 冯晓国, 徐念喜, 赵晶丽, 陈红. 二阶Y环频率选择表面的设计研究. 物理学报, 2010, 59(10): 7338-7343. doi: 10.7498/aps.59.7338
    [18] 吴群, 张狂, 孟繁义, 李乐伟. 正N边形柱的隐身条件的严格推导及其隐身特性验证. 物理学报, 2009, 58(3): 1619-1626. doi: 10.7498/aps.58.1619
    [19] 李小秋, 冯晓国, 高劲松. 光学透明频率选择表面的研究. 物理学报, 2008, 57(5): 3193-3197. doi: 10.7498/aps.57.3193
    [20] 张拴勤, 石云龙, 黄长庚, 连长春. 隐身涂层的光谱反射特性设计. 物理学报, 2007, 56(9): 5508-5512. doi: 10.7498/aps.56.5508
计量
  • 文章访问数:  5405
  • PDF下载量:  200
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-08
  • 修回日期:  2015-07-13
  • 刊出日期:  2015-09-05

/

返回文章
返回