搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Soret效应对具有自由表面的圆柱形浅池内双组分溶液热对流影响的实验研究

于佳佳 李友荣 陈捷超 吴春梅

引用本文:
Citation:

Soret效应对具有自由表面的圆柱形浅池内双组分溶液热对流影响的实验研究

于佳佳, 李友荣, 陈捷超, 吴春梅

Influence of Soret effect on thermal convection of a binary mixture in a shallow cylindrical pool with a free surface

Yu Jia-Jia, Li You-Rong, Chen Jie-Chao, Wu Chun-Mei
PDF
导出引用
  • 为了探究Soret效应对具有自由表面的圆柱形浅液池内双组分溶液热对流过程的影响, 通过实验观察了质量分数为50%的正癸烷/正己烷混合溶液在不同深宽比的液池内流动失稳后的自由表面耗散结构及液池内的温度波动. 结果表明, 双组分溶液流动失稳的临界热毛细Reynolds数小于纯工质的值, 且其随液层深宽比的变化规律与纯工质相同. 当深宽比小于0.0848时, 流动失稳后在自由表面观察到热流体波, 监测点处温度波动主频随热毛细Reynolds数增大而增加; 当深宽比大于0.0848时, 随热毛细Reynolds数的增大, 流动失稳后自由表面依次呈现轮辐状、花苞状、分离-合并-分离交替变化的条纹状结构.
    In this paper, a series of experiments are conducted to understand the influence of Soret effect on thermal convection of binary mixture in a cylindrical pool with a free surface. The cylindrical pool is filled with the n-decane/n-hexane mixture with an n-decane initial mass fraction of 50%. The cylindrical pool and the disk on the free surface are kept at constant temperatures of Th and Tc (Th Tc), respectively. Temperature fluctuation pattern on the free surface is obtained by the schlieren method. Various temperature oscillatory patterns on the free surface are observed when the thermal convection of the n-decane/n-hexane mixture destabilizes at different aspect ratios. Results show that the critical thermal capillary Reynolds number of the incipience of the three-dimensional oscillatory flow in the n-decane/n-hexane mixture is smaller than that in the n-hexane fluid, and the variation tendency with the aspect ratio in the n-decane/n-hexane mixture is the same as that in the n-hexane fluid. The solute-capillary force caused by Soret effect plays an important role of the thermal convection in the n-decane/n-hexane mixture. Because the solute-capillary force has the same direction as the thermocapillary force, the thermal convection in the n-decane/n-hexane mixture becomes more instable and the critical thermocapillary Reynolds number is smaller than that in the n-hexane fluid. In the n-decane/n-hexane mixture, when the aspect ratio increases from 0.0217 to 0.0392, the critical thermal capillary Reynolds number decreases from 7.2104 to 5.0104. With the increase of the aspect ratio, the effect of the buoyancy is enhanced, and the critical thermocapillary Reynolds number decreases. When the aspect ratio increases from 0.0392 to 0.0434, the cold plume which facilitates destabilizing the thermal convection cannot be obviously enhanced. There is little effect of the cold plume on the fluid near the bottom. Therefore, the critical thermal capillary Reynolds number increases from 5.0104 to 6.4104 in this range. In the deep pool, the critical thermal capillary Reynolds number is almost a constant value. When the aspect ratio is smaller than 0.0848, the three-dimensional oscillatory flow occurs and the hydrothermal waves are observed. After the three-dimensional oscillatory flow appears, two groups of the hydrothermal waves with opposite propagating directions coexist in the pool. With the increase of the thermal capillary Reynolds number, the honeycomb-like patterns appear on the free surface, which are similar to the Bnard cells. In addition, the non-dimensional fundamental oscillation frequency increases with the thermal capillary Reynolds number. When the aspect ratio is bigger than 0.0848, spoke pattern, rosebud-like pattern and thin-longitudinal stripes will appear sequentially with the increase of thermocapillary Reynolds number. Furthermore, the number of the rosebud-like patterns decreases, while the area on the free surface in the pool occupied by the rosebud-like pattern increases with the increase of the thermal capillary Reynolds number.
      通信作者: 李友荣, liyourong@cqu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51176209)资助的课题.
      Corresponding author: Li You-Rong, liyourong@cqu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51176209).
    [1]

    Soret C 1979 Arch. Sci. Phys. Nat. 2 48

    [2]

    Pugin V A, Bagdasarov N 1988 Geochem. Int. 25 57

    [3]

    Carrigan C R, Cygan R T 1986 J. Geophys. Res. 91 11451

    [4]

    Platten J K 2006 J. Appl. Mech. 73 5

    [5]

    Rahman M A, Saghir M Z 2014 Int. J. Heat Mass Transf. 73 693

    [6]

    Ning L Z, Yuan Z, Shi F, Qi X 2007 Chin. J. Appl. Mech. 24 363 (in Chinese) [宁利中, 袁喆, 石峯, 齐昕 2007 应用力学学报 24 363]

    [7]

    Ning L Z, Qi X, Zhou Y, Yu L 2009 Acta Phys. Sin. 58 2528 (in Chinese) [宁利中, 齐昕, 周洋, 余荔 2009 物理学报 58 2528]

    [8]

    Ning L Z, Wang N, Yuan Z, Li K J, Wang Z Y 2014 Acta Phys. Sin. 63 104401 (in Chinese) [宁利中, 王娜, 袁喆, 李开继, 王卓运 2014 物理学报 63 104401]

    [9]

    Bergeon A, Henry D, Benhadid L H, Tuckerman L S 1998 J. Fluid Mech. 375 143

    [10]

    Jian Y J, E X Q, Zhang J, Meng J M 2004 Chin. Phys. 13 2013

    [11]

    Charrier-Mojtabi M C, Elhajjar B, Mojtabi A 2007 Phys. Fluids 19 124104

    [12]

    Mansour A, Amahmid A, Hasnaoui M, Bourich M 2006 Numer. Heat Tranf. A-Appl. 49 69

    [13]

    Mansour A, Amahmid A, Hasnaoui M 2008 Int. J. Heat Fluid Flow 29 306

    [14]

    Mansour A, Amahmid A, Hasnaoui M, Bourich M 2004 Int. Comm. Heat Mass Transf. 31 431

    [15]

    Alloui I, Benmoussa H, Vasseur P 2010 Int. J. Heat Fluid Flow 31 191

    [16]

    Zhu Z Q, Chen S L, Liu Q S, Tong S L 2011 Chin. J. Theoret. Appl. Mech. 43 674 (in Chinese) [朱志强, 陈淑玲, 刘秋生, 同少莉 2011 力学学报 43 674]

    [17]

    Duan L, Kang Q 2008 Chin. Phys. B 17 3149

    [18]

    Gong Z X, Li Y R, Peng L, Wu S Y, Shi W Y 2013 Acta Phys. Sin. 62 040201 (in Chinese) [龚振兴, 李友荣, 彭岚, 吴双应, 石万元 2013 物理学报 62 040201]

    [19]

    Yu J J, Ruan D F, Li Y R, Chen J C 2015 Exp. Therm. Fluid Sci. 61 79

    [20]

    Yu J J, Li Y R, Chen J C 2014 J. Eng. Thermophys. 35 1176 (in Chinese) [于佳佳, 李友荣, 陈捷超 2014 工程热物理学报 35 1176]

    [21]

    Shi W Y, Li Y R, Zeng D L, Imaishi N 2007 J. Eng. Thermophys. 28 101 (in Chinese) [石万元, 李友荣, 曾丹苓, 今石宣之 2007 工程热物理学报 28 101]

    [22]

    Shi W Y, Wang Y 2013 J. Eng. Thermophys. 34 702 (in Chinese) [石万元, 王瑜 2013 工程热物理学报 34 702]

    [23]

    Blanco P, Polyakov P, Bou-Ali M M, Wiegand S 2008 J. Phys. Chem. B 112 8340

    [24]

    Teitel M, Schwabe D, Gelfgat A Y 2008 J. Cryst. Growth 310 1343

    [25]

    Peng L, Li Y R, Shi W Y, Imaishi N 2007 Int. J. Heat Mass Transf. 50 872

    [26]

    Shi W Y, Imaishi N 2006 J. Cryst. Growth 290 280

    [27]

    Bnard H 1901 J. Phys. Theor. Appl. 10 254

    [28]

    Sim B C, Zebib A, Schwabe D 2003 J. Fluid Mech. 491 259

    [29]

    Benz S, Schwabe D 2001 Exp. Fluids 31 409

    [30]

    Li Y R, Yuan X F, Hu Y P, Tang J W 2013 Exp. Thermal Fluid Sci. 44 544

    [31]

    Coleman H W, Steele W G 2009 Experimentation, Validation, and Uncertainty Analysis for Engineers (3rd Ed.) (New York: John Wiley Sons) pp128-150

  • [1]

    Soret C 1979 Arch. Sci. Phys. Nat. 2 48

    [2]

    Pugin V A, Bagdasarov N 1988 Geochem. Int. 25 57

    [3]

    Carrigan C R, Cygan R T 1986 J. Geophys. Res. 91 11451

    [4]

    Platten J K 2006 J. Appl. Mech. 73 5

    [5]

    Rahman M A, Saghir M Z 2014 Int. J. Heat Mass Transf. 73 693

    [6]

    Ning L Z, Yuan Z, Shi F, Qi X 2007 Chin. J. Appl. Mech. 24 363 (in Chinese) [宁利中, 袁喆, 石峯, 齐昕 2007 应用力学学报 24 363]

    [7]

    Ning L Z, Qi X, Zhou Y, Yu L 2009 Acta Phys. Sin. 58 2528 (in Chinese) [宁利中, 齐昕, 周洋, 余荔 2009 物理学报 58 2528]

    [8]

    Ning L Z, Wang N, Yuan Z, Li K J, Wang Z Y 2014 Acta Phys. Sin. 63 104401 (in Chinese) [宁利中, 王娜, 袁喆, 李开继, 王卓运 2014 物理学报 63 104401]

    [9]

    Bergeon A, Henry D, Benhadid L H, Tuckerman L S 1998 J. Fluid Mech. 375 143

    [10]

    Jian Y J, E X Q, Zhang J, Meng J M 2004 Chin. Phys. 13 2013

    [11]

    Charrier-Mojtabi M C, Elhajjar B, Mojtabi A 2007 Phys. Fluids 19 124104

    [12]

    Mansour A, Amahmid A, Hasnaoui M, Bourich M 2006 Numer. Heat Tranf. A-Appl. 49 69

    [13]

    Mansour A, Amahmid A, Hasnaoui M 2008 Int. J. Heat Fluid Flow 29 306

    [14]

    Mansour A, Amahmid A, Hasnaoui M, Bourich M 2004 Int. Comm. Heat Mass Transf. 31 431

    [15]

    Alloui I, Benmoussa H, Vasseur P 2010 Int. J. Heat Fluid Flow 31 191

    [16]

    Zhu Z Q, Chen S L, Liu Q S, Tong S L 2011 Chin. J. Theoret. Appl. Mech. 43 674 (in Chinese) [朱志强, 陈淑玲, 刘秋生, 同少莉 2011 力学学报 43 674]

    [17]

    Duan L, Kang Q 2008 Chin. Phys. B 17 3149

    [18]

    Gong Z X, Li Y R, Peng L, Wu S Y, Shi W Y 2013 Acta Phys. Sin. 62 040201 (in Chinese) [龚振兴, 李友荣, 彭岚, 吴双应, 石万元 2013 物理学报 62 040201]

    [19]

    Yu J J, Ruan D F, Li Y R, Chen J C 2015 Exp. Therm. Fluid Sci. 61 79

    [20]

    Yu J J, Li Y R, Chen J C 2014 J. Eng. Thermophys. 35 1176 (in Chinese) [于佳佳, 李友荣, 陈捷超 2014 工程热物理学报 35 1176]

    [21]

    Shi W Y, Li Y R, Zeng D L, Imaishi N 2007 J. Eng. Thermophys. 28 101 (in Chinese) [石万元, 李友荣, 曾丹苓, 今石宣之 2007 工程热物理学报 28 101]

    [22]

    Shi W Y, Wang Y 2013 J. Eng. Thermophys. 34 702 (in Chinese) [石万元, 王瑜 2013 工程热物理学报 34 702]

    [23]

    Blanco P, Polyakov P, Bou-Ali M M, Wiegand S 2008 J. Phys. Chem. B 112 8340

    [24]

    Teitel M, Schwabe D, Gelfgat A Y 2008 J. Cryst. Growth 310 1343

    [25]

    Peng L, Li Y R, Shi W Y, Imaishi N 2007 Int. J. Heat Mass Transf. 50 872

    [26]

    Shi W Y, Imaishi N 2006 J. Cryst. Growth 290 280

    [27]

    Bnard H 1901 J. Phys. Theor. Appl. 10 254

    [28]

    Sim B C, Zebib A, Schwabe D 2003 J. Fluid Mech. 491 259

    [29]

    Benz S, Schwabe D 2001 Exp. Fluids 31 409

    [30]

    Li Y R, Yuan X F, Hu Y P, Tang J W 2013 Exp. Thermal Fluid Sci. 44 544

    [31]

    Coleman H W, Steele W G 2009 Experimentation, Validation, and Uncertainty Analysis for Engineers (3rd Ed.) (New York: John Wiley Sons) pp128-150

  • [1] 何建超, 方明卫, 包芸. 二维湍流热对流最大速度Re数特性及流态突变特征Re数. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220352
    [2] 牛越, 包为民, 李小平, 刘彦明, 刘东林. 大功率热平衡感应耦合等离子体数值模拟及实验研究. 物理学报, 2021, 70(9): 095204. doi: 10.7498/aps.70.20201610
    [3] 王新波, 白鹤, 孙勤奋, 殷新社, 张洪太, 崔万照. 真空罐穿舱法兰介质微放电的实验研究. 物理学报, 2021, 70(12): 127901. doi: 10.7498/aps.70.20210106
    [4] 尹慧, 赵秉新. 倾角对方腔内热对流非线性演化与分岔的影响. 物理学报, 2021, 70(11): 114401. doi: 10.7498/aps.70.20201513
    [5] 方明卫, 何建超, 包芸. 湍流热对流温度剖面双参数拟合及其变化特性. 物理学报, 2020, 69(17): 174701. doi: 10.7498/aps.69.20200073
    [6] 郑来运, 赵秉新, 杨建青. 弱Soret效应混合流体对流系统的分岔与非线性演化. 物理学报, 2020, 69(7): 074701. doi: 10.7498/aps.69.20191836
    [7] 包芸, 高振源, 叶孟翔. 湍流热对流Prandtl数效应的数值研究. 物理学报, 2018, 67(1): 014701. doi: 10.7498/aps.67.20171518
    [8] 李晓庆, 王涛, 季小玲. 球差光束在大气湍流中传输特性的实验研究. 物理学报, 2014, 63(13): 134209. doi: 10.7498/aps.63.134209
    [9] 包芸, 宁浩, 徐炜. 湍流热对流大尺度环流反转时的角涡特性. 物理学报, 2014, 63(15): 154703. doi: 10.7498/aps.63.154703
    [10] 宁利中, 王娜, 袁喆, 李开继, 王卓运. 分离比对混合流体Rayleigh-Bénard对流解的影响. 物理学报, 2014, 63(10): 104401. doi: 10.7498/aps.63.104401
    [11] 龚振兴, 李友荣, 彭岚, 吴双应, 石万元. 旋转环形浅液池内双组分溶液耦合热-溶质毛细对流渐近解. 物理学报, 2013, 62(4): 040201. doi: 10.7498/aps.62.040201
    [12] 赵寰宇, 何存富, 吴斌, 汪越胜. 二维正方晶格多点缺陷声子晶体实验研究. 物理学报, 2013, 62(13): 134301. doi: 10.7498/aps.62.134301
    [13] 毛威, 郭照立, 王亮. 热对流条件下颗粒沉降的格子Boltzmann方法模拟. 物理学报, 2013, 62(8): 084703. doi: 10.7498/aps.62.084703
    [14] 刘汉涛, 常建忠, 安康, 苏铁熊. 热对流条件下双颗粒沉降的直接数值模拟. 物理学报, 2010, 59(3): 1877-1883. doi: 10.7498/aps.59.1877
    [15] 仝志辉. 热对流条件下固液密度比对颗粒沉降运动影响的直接数值模拟. 物理学报, 2010, 59(3): 1884-1889. doi: 10.7498/aps.59.1884
    [16] 刘汉涛, 仝志辉, 安康, 马理强. 溶解与热对流对固体颗粒运动影响的直接数值模拟. 物理学报, 2009, 58(9): 6369-6375. doi: 10.7498/aps.58.6369
    [17] 孙 亮, 孙一峰, 马东军, 孙德军. 高瑞利数下水平自然热对流的幂律关系. 物理学报, 2007, 56(11): 6503-6507. doi: 10.7498/aps.56.6503
    [18] 李国栋, 黄永念. 双组分混合流体中Eckhaus不稳定调谐的行波对流. 物理学报, 2007, 56(8): 4742-4748. doi: 10.7498/aps.56.4742
    [19] 赵 颖, 季仲贞, 冯 涛. 用格子Boltzmann模型模拟垂直平板间的热对流. 物理学报, 2004, 53(3): 671-675. doi: 10.7498/aps.53.671
    [20] 林上金. 基流对热对流涡旋结构影响的实验结果初步分析. 物理学报, 2002, 51(9): 2057-2056. doi: 10.7498/aps.51.2057
计量
  • 文章访问数:  2942
  • PDF下载量:  144
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-07
  • 修回日期:  2015-06-18
  • 刊出日期:  2015-11-05

Soret效应对具有自由表面的圆柱形浅池内双组分溶液热对流影响的实验研究

  • 1. 重庆大学动力工程学院, 低品位能源利用技术及系统教育部重点实验室, 重庆 400044
  • 通信作者: 李友荣, liyourong@cqu.edu.cn
    基金项目: 国家自然科学基金(批准号: 51176209)资助的课题.

摘要: 为了探究Soret效应对具有自由表面的圆柱形浅液池内双组分溶液热对流过程的影响, 通过实验观察了质量分数为50%的正癸烷/正己烷混合溶液在不同深宽比的液池内流动失稳后的自由表面耗散结构及液池内的温度波动. 结果表明, 双组分溶液流动失稳的临界热毛细Reynolds数小于纯工质的值, 且其随液层深宽比的变化规律与纯工质相同. 当深宽比小于0.0848时, 流动失稳后在自由表面观察到热流体波, 监测点处温度波动主频随热毛细Reynolds数增大而增加; 当深宽比大于0.0848时, 随热毛细Reynolds数的增大, 流动失稳后自由表面依次呈现轮辐状、花苞状、分离-合并-分离交替变化的条纹状结构.

English Abstract

参考文献 (31)

目录

    /

    返回文章
    返回