搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用含二面角误差的角锥棱镜阵列实现反射光束均匀发散的方法

周晓凤 戚祖敏 罗向前 刘长安 朱建辉 王泽华 张轶 訾彦勇

引用本文:
Citation:

利用含二面角误差的角锥棱镜阵列实现反射光束均匀发散的方法

周晓凤, 戚祖敏, 罗向前, 刘长安, 朱建辉, 王泽华, 张轶, 訾彦勇

A method to diverge reflected beam uniformly using cube-corner retroreflector array with dihedral angle tolerances

Zhou Xiao-Feng, Qi Zu-Min, Luo Xiang-Qian, Liu Chang-An, Zhu Jian-Hui, Wang Ze-Hua, Zhang Yi, Zi Yan-Yong
PDF
导出引用
  • 角锥棱镜常应用于光电跟踪、卫星通信、干涉仪等领域. 在一些特殊应用场合中,要求经角锥棱镜反射的光束具有一定的发散角,以实现对距离激光器较远位置处探测器的覆盖. 由于标准角锥棱镜不具备对光束发散的功能,本文利用含二面角误差的角锥棱镜对反射光束的不均匀发散特性,提出利用角锥棱镜阵列实现对反射光束均匀发散的方法和设计原则. 采用衍射光学理论分析了所提方法及其设计原则的可行性,并依此设计了一个发散半角为0.5 mrad的角锥棱镜阵列. 分析了光束参数、结构参数对反射光束远场衍射特性的影响,结果表明,入射光斑强度分布对反射光束发散半角没有影响,当角锥阵列满足点光源条件时,传输距离对反射光斑的角向均匀性没有影响;当阵元数超过一定值时,均匀性不再显著变化,但反射光斑的强度将进一步增加. 在工程应用中,角锥棱镜阵列安装方位角误差对反射特性影响不显著,但角锥棱镜二面角的加工精度对反射特性影响较大,可通过进一步增加阵元数加以解决.
    The cube-corner retroreflector (CCR) is widely applied in the electro-optical tracking, satellite communication, interferometers and adjust-free solid state laser. In some applications, the incident beam emitted by a laser is reflected back by the CCR to a photoelectric detector. The distance between the photoelectric detector and the laser source on the ground is much larger than the diffraction-limited spot. Meanwhile, the attitude angle of the CCR would randomly vary for the jitter of the platform. Therefore, the reflected beam should be diverged uniformly at far-field, whereas the normal CCR cannot achieve the divergence on the reflected beam. The investigation indicated that six sub-spots are generated by a CCR with dihedral angle tolerances at far-field. According the characteristics of the CCR with dihedral angle tolerances, a structure and its design method are proposed to diverge the reflected beam with a CCR array. The azimuthal angles of the every CCR of the array should be specially designed to generate an annular and uniform pattern. Due to the propagation distance is much larger than the size of the CCR array, the feasibility of the method is analyzed by the wave theory. A CCR array with a divergence half-angle of 0.5 mrad is designed, in which the dihedral angle tolerance of every CCR is 20. The influences of the beam and structure parameters on the diffraction characteristics of the reflected beam are investigated. The numerical results indicate the divergence half-angle of the CCR array varies quasi-linearly with the change of the dihedral angle tolerance, and the intensity distribution of the incident beam does not influence the divergence half-angle. The propagation distance does not affect the uniformity of the reflected beam when the CCR array satisfies the point source condition. When the number of the array element increases to a certain value, the increase of the number can strengthen the intensity and hardly influences the uniformity of the reflected beam. For the restriction of the machining and assembling technics, the dihedral angle tolerance of every CCR is hardly identical and the assembling azimuthal angles of the array element can not be identical with the design result. Therefore, the influence of the assemblage azimuth error and machining accuracy of the dihedral angle are studied. It reveals that the assemblage azimuth error does not remarkably the reflection pattern, whereas the machining accuracy can observably affect the uniformity of the reflection pattern, which can be resolved by the growth of the number of array element.
      通信作者: 戚祖敏, qizumin@126.com
      Corresponding author: Qi Zu-Min, qizumin@126.com
    [1]

    Zurasky J L 1976 Appl. Opt. 15 445

    [2]

    Liu J Y, Yang J Q, Dong D F, Zhou W H 2015 Opt. Precision Eng. 23 1558 (in Chinese) [刘娇月, 杨聚庆, 董登峰, 周维虎 2015 光学精密工程 23 1558]

    [3]

    Wang L G, Wu Z S, Wang M J 2013 Acta Phys. Sin. 62 164210 (in Chinese) [王利国, 吴振森, 王明军 2013 物理学报 62 164210]

    [4]

    Wang J C, Zhang C M, Zhao B C, Liu N 2010 Acta Phys. Sin. 59 1625 (in Chinese) [王金婵, 张淳民, 赵葆常, 刘宁 2010 物理学报 59 1625]

    [5]

    Zhang X N, Zhang C M 2012 Acta Phys. Sin. 61 104210 (in Chinese) [张宣妮, 张淳民 2012 物理学报 61 104210]

    [6]

    Tang Y H, Zhang C M, Liu H C, Chen G D, He J 2005 Acta Phys. Sin. 54 4065 (in Chinese) [唐远河, 张淳民, 刘汉臣, 陈光德, 贺健 2005 物理学报 54 4065]

    [7]

    Nie H, Weng X T, Li S, Liu J Y 2003 Acta Opt. Sin. 23 1470 (in Chinese) [聂辉, 翁兴涛, 李松, 刘基余 2003 光学学报 23 1470]

    [8]

    Zhou H, Li S, Zheng G X, Gao J L 2009 Acta Opt. Sin. 29 60 (in Chinese) [周辉, 李松, 郑国兴, 高俊玲 2009 光学学报 29 60]

    [9]

    Wang T, Wang W, Geng D, Du P, Gong M 2014 Opt. Spectrosc. 117 158

    [10]

    Ji J R 2007 Advanced Optical Course (Beijing: Science Press) pp295-299 (in Chinese) [季家镕 2007 高等光学教程 (北京: 科学出版社) 第295-299页]

    [11]

    Zhou, H, Li S, Zheng G X 2011 Opt. Rev. 18 1

    [12]

    Coy S 2005 Proc. SPIE 589405

    [13]

    Rydberg C, Bengtsson J 2006 J. Opt. Soc. Am. A 23 1616

    [14]

    Liu W L, Ouyang J F, Qu X H 2009 Opt. Precision Eng. 17 286 (in Chinese) [刘万里, 欧阳健飞, 曲兴华 2009 光学精密工程 17 286]

  • [1]

    Zurasky J L 1976 Appl. Opt. 15 445

    [2]

    Liu J Y, Yang J Q, Dong D F, Zhou W H 2015 Opt. Precision Eng. 23 1558 (in Chinese) [刘娇月, 杨聚庆, 董登峰, 周维虎 2015 光学精密工程 23 1558]

    [3]

    Wang L G, Wu Z S, Wang M J 2013 Acta Phys. Sin. 62 164210 (in Chinese) [王利国, 吴振森, 王明军 2013 物理学报 62 164210]

    [4]

    Wang J C, Zhang C M, Zhao B C, Liu N 2010 Acta Phys. Sin. 59 1625 (in Chinese) [王金婵, 张淳民, 赵葆常, 刘宁 2010 物理学报 59 1625]

    [5]

    Zhang X N, Zhang C M 2012 Acta Phys. Sin. 61 104210 (in Chinese) [张宣妮, 张淳民 2012 物理学报 61 104210]

    [6]

    Tang Y H, Zhang C M, Liu H C, Chen G D, He J 2005 Acta Phys. Sin. 54 4065 (in Chinese) [唐远河, 张淳民, 刘汉臣, 陈光德, 贺健 2005 物理学报 54 4065]

    [7]

    Nie H, Weng X T, Li S, Liu J Y 2003 Acta Opt. Sin. 23 1470 (in Chinese) [聂辉, 翁兴涛, 李松, 刘基余 2003 光学学报 23 1470]

    [8]

    Zhou H, Li S, Zheng G X, Gao J L 2009 Acta Opt. Sin. 29 60 (in Chinese) [周辉, 李松, 郑国兴, 高俊玲 2009 光学学报 29 60]

    [9]

    Wang T, Wang W, Geng D, Du P, Gong M 2014 Opt. Spectrosc. 117 158

    [10]

    Ji J R 2007 Advanced Optical Course (Beijing: Science Press) pp295-299 (in Chinese) [季家镕 2007 高等光学教程 (北京: 科学出版社) 第295-299页]

    [11]

    Zhou, H, Li S, Zheng G X 2011 Opt. Rev. 18 1

    [12]

    Coy S 2005 Proc. SPIE 589405

    [13]

    Rydberg C, Bengtsson J 2006 J. Opt. Soc. Am. A 23 1616

    [14]

    Liu W L, Ouyang J F, Qu X H 2009 Opt. Precision Eng. 17 286 (in Chinese) [刘万里, 欧阳健飞, 曲兴华 2009 光学精密工程 17 286]

  • [1] 闫观鑫, 郝永芹, 张秋波. 高功率垂直腔面发射激光器阵列热特性. 物理学报, 2024, 73(5): 054204. doi: 10.7498/aps.73.20231614
    [2] 刘晓轩, 孙飞扬, 吴颖, 杨盛谊, 邹炳锁. 硅纳米线阵列光电探测器研究进展. 物理学报, 2023, 72(6): 068501. doi: 10.7498/aps.72.20222303
    [3] 刘增, 李磊, 支钰崧, 都灵, 方君鹏, 李山, 余建刚, 张茂林, 杨莉莉, 张少辉, 郭宇锋, 唐为华. 具有大光电导增益的氧化镓薄膜基深紫外探测器阵列. 物理学报, 2022, 71(20): 208501. doi: 10.7498/aps.71.20220859
    [4] 陆子晴, 韩勤, 叶焓, 王帅, 肖峰, 肖帆. 适用400 Gbit/s接收系统的铟磷基低暗电流高带宽倏逝波耦合光电探测器阵列. 物理学报, 2021, 70(20): 208501. doi: 10.7498/aps.70.20210781
    [5] 闫志巾, 施卫. 太赫兹GaAs光电导天线阵列辐射特性. 物理学报, 2021, 70(24): 248704. doi: 10.7498/aps.70.20211210
    [6] 汤凯, 程志恩, 邓华荣, 耿仁方, 张忠萍. 角锥棱镜的斜入射远场衍射图样. 物理学报, 2021, 70(15): 154201. doi: 10.7498/aps.70.20210261
    [7] 王志鹏, 张峰, 杨嘉炜, 李鹏涛, 关宝璐. 表面液晶-垂直腔面发射激光器阵列的热特性. 物理学报, 2020, 69(6): 064203. doi: 10.7498/aps.69.20191793
    [8] 周静, 王鸣, 倪海彬, 马鑫. 环形狭缝腔阵列光学特性的研究. 物理学报, 2015, 64(22): 227301. doi: 10.7498/aps.64.227301
    [9] 殷澄, 许田, 陈秉岩, 韩庆邦. 金属粒子阵列共振的偏振特性. 物理学报, 2015, 64(16): 164202. doi: 10.7498/aps.64.164202
    [10] 刘钰薇, 张文海, 张继成, 范全平, 魏来, 晏卓阳, 赵屹东, 崔明启, 邱荣, 曹磊峰. 准随机矩形孔阵列透射光栅. 物理学报, 2015, 64(7): 074201. doi: 10.7498/aps.64.074201
    [11] 李志杰, 田鸣, 贺连龙. AlN纳米线宏观阵列的制备. 物理学报, 2011, 60(9): 098101. doi: 10.7498/aps.60.098101
    [12] 张雪芹, 王均宏, 李铮. 微带阵列天线的时域散射特性. 物理学报, 2011, 60(5): 051301. doi: 10.7498/aps.60.051301
    [13] 王金婵, 张淳民, 赵葆常, 刘宁. 静态偏振风成像干涉仪中光在四面角锥棱镜中的传播规律研究. 物理学报, 2010, 59(3): 1625-1631. doi: 10.7498/aps.59.1625
    [14] 侯吉旋, 王 鑫, 黄 姗, 林建军, 万承兰, 刘全慧. 简单体系温度涨落的发散问题. 物理学报, 2006, 55(4): 1616-1621. doi: 10.7498/aps.55.1616
    [15] 唐远河, 张淳民, 刘汉臣, 陈光德, 贺 健. 基于镀膜四面角锥棱镜技术的上层大气风场探测研究. 物理学报, 2005, 54(9): 4065-4071. doi: 10.7498/aps.54.4065
    [16] 朱传贵, 薛鸣球, 刘德森, 高应俊. 光学元件阵列的衍射理论分析. 物理学报, 1993, 42(3): 394-399. doi: 10.7498/aps.42.394
    [17] 张建中, 曹嬿妮. 发散X射线晶体衍射模拟研究. 物理学报, 1990, 39(1): 124-128. doi: 10.7498/aps.39.124
    [18] 李芳昱, 唐孟希. 空间阵列的狭窄波束型引力辐射. 物理学报, 1987, 36(12): 1570-1582. doi: 10.7498/aps.36.1570
    [19] 范希庆, 王国樑, 姜王也, 戴培英, 刘福绥. 玻璃超声吸收的红外发散理论. 物理学报, 1985, 34(10): 1270-1279. doi: 10.7498/aps.34.1270
    [20] 邓辉舫, 刘福绥. 输运过程的红外发散理论. 物理学报, 1985, 34(6): 784-795. doi: 10.7498/aps.34.784
计量
  • 文章访问数:  6555
  • PDF下载量:  188
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-16
  • 修回日期:  2016-12-11
  • 刊出日期:  2017-04-05

/

返回文章
返回