搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Eu原子4f76snlRydberg态的研究

常鑫鑫 沈礼 武晓瑞 戴长建

引用本文:
Citation:

Eu原子4f76snlRydberg态的研究

常鑫鑫, 沈礼, 武晓瑞, 戴长建

Study of Eu 4f76snl Rydberg states

Chang Xin-Xin, Shen Li, Wu Xiao-Rui, Dai Chang-Jian
PDF
导出引用
  • 利用三步双色共振激发技术和三步三色孤立实激发技术,系统地研究了铕原子在4225044510 cm-1能域内的光谱特性,提供了该能域内56个束缚高激发态的光谱信息.为了能确定这些态的光谱归属,进行了两方面的探索:第一,观察能否利用孤立实激发技术,把处于这些态上的铕原子进一步共振激发到自电离态,从而推断这些态属于单电子激发的束缚Rydberg态还是属于双电子激发的价态,并对Rydberg态的电子组态进行了光谱确认;第二,通过计算这些态相对于各个电离阈的量子亏损并观察它们分别收敛于哪个电离阈,以便获取其主量子数的信息.最后,设计并采用了三种不同的激发路径,分别将原子布居到同一高激发能域并探测它们在该能域的光电离光谱.通过比较这些光谱的异同并结合上述激发路径所对应的跃迁选择定则,便可惟一地确定这些高激发态的总角动量.研究发现:所探测到的高激发束缚态只有三个属于单电子激发的束缚Rydberg态,其余都是价态.本文确定了这三个Rydberg态的电子组态和原子状态.
    The three-step two-color resonant ionization method and three-step three-color isolated-core excitation (ICE) technique are used to study the spectra of the highly excited bound states systematically, either Eu 4f76snl Rydberg states or other valence states converging to the higher ionization limits. Specifically, the highly excited bound states are populated from the ground state via three different 4f76s6p intermediate states, thereby establishing the three different excitation schemes. The schemes are designed to allow us to assign a J-quantum number uniquely to a given highly excited state with the selection rules of J-quantum number for each excitation scheme by comparing their corresponding photoionization spectra, which are obtained with three-step two-color resonant ionization method. By tuning the wavelength of the second laser, the 56 highly excited bound states located in the energy region between 42250 cm-1 and 44510 cm-1 are detected. To explore their spectroscopic information, more efforts have been made 1) to judge whether an excited state is a bound Rydberg state and to observe whether it may be excited further to an autoionizing state by using the ICE technique; 2) to deduce the principal quantum number of the given bound Rydberg states, and to observe whether they are converged to the same ionization limit by calculating their quantum defects with respect to several ionization limits. Based on the above manipulations, all detected highly excited bound states can be classified as the two categories: bound Eu 4f76snl Rydberg states and other valence states converging to the higher ionization limits, such as the Eu 4f75dnl states. Specifically, to fulfill the ICE technique, it is necessary to make a resonance transition from the 4f76snl Rydberg states to the 4f76p1/2nl autoionizing states with the third dye laser whose wavelength is scanned around the Eu 4f76s+-4f76p1/2+ ionic line. Once the Eu 4f76snl Rydberg states are recognized with the ICE technique, the identification of their orbital quantum numbers is a primary task to determine their electron configurations. With all the efforts mentioned and existing information, three Rydberg states can be assigned to the 4f76s10s(8S9/2), 4f76s9d(8D9/2) and 4f76s9d(6D7/2), whereas the rest can be regarded as highly excited valence states.
      通信作者: 戴长建, daicj@126.com
    • 基金项目: 国家自然科学基金(批准号:11174218)资助的课题.
      Corresponding author: Dai Chang-Jian, daicj@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11174218).
    [1]

    Dai C J, Schinn G W, Gallagher T F 1990 Phys. Rev. A 42 223

    [2]

    Lpez M F, Gutirrez A 1997 J. Phys.: Condens. Matter 9 6113

    [3]

    Li M, Dai C J, Xie J 2011 Sci. China: Phys. Mech. Astron. 54 1124

    [4]

    Li M, Dai C J, Xie J 2011 J. Quantat. Spectrosc. Rad. Transfer 112 793

    [5]

    Li M, Dai C J, Xie J 2011 Chin. Phys. B 20 063204

    [6]

    Bailey J, Kilkenny J D, Lee Y, Maxon S, Scofield J H, Weber D 1987 Phys. Rev. A 35 2578

    [7]

    Bhattacharyya S, Razvi M A N, Cohen S, Nakhate S G 2007 Phys. Rev. A 76 012502

    [8]

    Nakhate S G, Razvi M A, Connerade J P, Ahmad S A 2000 J. Phys. B: At. Mol. Opt. Phys. 33 5191

    [9]

    Nakhate S G, Razvi M A N, Ahmad S A 2000 J. Phys. B: At. Mol. Opt. Phys. 33 191

    [10]

    Nakhate S G, Razvi M A N, Bhale G L, Ahmad S A 1996 J. Phys. B: At. Mol. Opt. Phys. 29 1439

    [11]

    Dong C, Shen L, Yang J H, Dai C J 2014 Acta Opt. Sin. 34 702001 (in Chinese) [董程, 沈礼, 杨金红, 戴长建 2014 光学学报 34 702001]

    [12]

    Liang H R, Shen L, Jing H, Dai C J 2014 Acta Phys. Sin. 63 133202 (in Chinese) [梁洪瑞, 沈礼, 杨金红, 戴长建 2014 物理学报 63 133202]

    [13]

    Zhang K, Shen L, Dong C, Dai C J 2015 Chin. Phys. B 24 103024

    [14]

    Yan J G, Shen L, Liang H R, Dai C J 2015 Chin. Phys. B 24 083203

    [15]

    Martin W C, Zalubas R, Hagan L 1978 Atomic Energy LevelsThe Rare-Earth Elements (Washington: National Bureau of Standards, US Department of Commerce) p185

    [16]

    Xie J, Dai C J, Li M 2010 Acta Opt. Sin. 30 2142 (in Chinese) [谢军, 戴长建, 李鸣 2010 光学学报 30 2142]

    [17]

    Xiao Y, Dai C J, Qin W J 2009 Chin. Phys. B 18 1833

  • [1]

    Dai C J, Schinn G W, Gallagher T F 1990 Phys. Rev. A 42 223

    [2]

    Lpez M F, Gutirrez A 1997 J. Phys.: Condens. Matter 9 6113

    [3]

    Li M, Dai C J, Xie J 2011 Sci. China: Phys. Mech. Astron. 54 1124

    [4]

    Li M, Dai C J, Xie J 2011 J. Quantat. Spectrosc. Rad. Transfer 112 793

    [5]

    Li M, Dai C J, Xie J 2011 Chin. Phys. B 20 063204

    [6]

    Bailey J, Kilkenny J D, Lee Y, Maxon S, Scofield J H, Weber D 1987 Phys. Rev. A 35 2578

    [7]

    Bhattacharyya S, Razvi M A N, Cohen S, Nakhate S G 2007 Phys. Rev. A 76 012502

    [8]

    Nakhate S G, Razvi M A, Connerade J P, Ahmad S A 2000 J. Phys. B: At. Mol. Opt. Phys. 33 5191

    [9]

    Nakhate S G, Razvi M A N, Ahmad S A 2000 J. Phys. B: At. Mol. Opt. Phys. 33 191

    [10]

    Nakhate S G, Razvi M A N, Bhale G L, Ahmad S A 1996 J. Phys. B: At. Mol. Opt. Phys. 29 1439

    [11]

    Dong C, Shen L, Yang J H, Dai C J 2014 Acta Opt. Sin. 34 702001 (in Chinese) [董程, 沈礼, 杨金红, 戴长建 2014 光学学报 34 702001]

    [12]

    Liang H R, Shen L, Jing H, Dai C J 2014 Acta Phys. Sin. 63 133202 (in Chinese) [梁洪瑞, 沈礼, 杨金红, 戴长建 2014 物理学报 63 133202]

    [13]

    Zhang K, Shen L, Dong C, Dai C J 2015 Chin. Phys. B 24 103024

    [14]

    Yan J G, Shen L, Liang H R, Dai C J 2015 Chin. Phys. B 24 083203

    [15]

    Martin W C, Zalubas R, Hagan L 1978 Atomic Energy LevelsThe Rare-Earth Elements (Washington: National Bureau of Standards, US Department of Commerce) p185

    [16]

    Xie J, Dai C J, Li M 2010 Acta Opt. Sin. 30 2142 (in Chinese) [谢军, 戴长建, 李鸣 2010 光学学报 30 2142]

    [17]

    Xiao Y, Dai C J, Qin W J 2009 Chin. Phys. B 18 1833

  • [1] 张锦芳, 任雅娜, 王军民, 杨保东. 铯原子激发态双色偏振光谱. 物理学报, 2019, 68(11): 113201. doi: 10.7498/aps.68.20181872
    [2] 刘硕, 白建东, 王杰英, 何军, 王军民. 铯原子nP3/2 (n = 70—94)里德伯态的紫外单光子激发及量子亏损测量. 物理学报, 2019, 68(7): 073201. doi: 10.7498/aps.68.20182283
    [3] 赵健东, 辛洁. 高激发态原子间的范德瓦尔斯相互作用. 物理学报, 2014, 63(13): 133201. doi: 10.7498/aps.63.133201
    [4] 杨变, 杨治虎, 徐秋梅, 郭义盼, 武晔虹, 宋张勇, 蔡晓红. 低速84Kr15+, 17+离子轰击GaAs单晶. 物理学报, 2014, 63(5): 053201. doi: 10.7498/aps.63.053201
    [5] 陶汝茂, 周朴, 王小林, 司磊, 刘泽金. 高功率全光纤结构主振荡功率放大器中模式不稳定现象的实验研究. 物理学报, 2014, 63(8): 085202. doi: 10.7498/aps.63.085202
    [6] 赵艳红, 戴长建, 野仕伟. Sm原子的偶宇称高激发态的光谱研究. 物理学报, 2012, 61(3): 033201. doi: 10.7498/aps.61.033201
    [7] 蒋利娟, 张现周, 马欢强, 贾光瑞, 张永慧, 夏立华. 啁啾微波场中里德伯钠原子高激发态的布居跃迁. 物理学报, 2012, 61(4): 043101. doi: 10.7498/aps.61.043101
    [8] 赵健东, 辛洁. 高激发态原子的相干效应. 物理学报, 2012, 61(19): 193302. doi: 10.7498/aps.61.193302
    [9] 高双红, 任兆玉, 郭平, 郑继明, 杜恭贺, 万丽娟, 郑琳琳. 石墨烯量子点的磁性及激发态性质. 物理学报, 2011, 60(4): 047105. doi: 10.7498/aps.60.047105
    [10] 肖颖, 戴长建, 赵洪英, 秦文杰. 铕原子奇宇称高激发态共振电离光谱的研究. 物理学报, 2009, 58(5): 3071-3077. doi: 10.7498/aps.58.3071
    [11] 袁卫国, 戴长建, 靳 嵩, 赵洪英, 关 锋. Ba原子6pnd(J=1, 3)自电离光谱的实验研究. 物理学报, 2008, 57(7): 4076-4082. doi: 10.7498/aps.57.4076
    [12] 王 谨, 胡正发, 张登玉, 詹明生. Rb原子激发态碰撞能量转移. 物理学报, 1998, 47(8): 1265-1271. doi: 10.7498/aps.47.1265
    [13] 沈异凡, 李万兴. 激发态钠原子间的碰撞能量合并. 物理学报, 1996, 45(1): 29-36. doi: 10.7498/aps.45.29
    [14] 沈异凡, 李万兴. 激发态铯原子间的碰撞能量转移. 物理学报, 1993, 42(11): 1766-1773. doi: 10.7498/aps.42.1766
    [15] 鲍敏琪, 仝晓民, 李家明. 离化态原子的激发态结构. 物理学报, 1989, 38(11): 1802-1808. doi: 10.7498/aps.38.1802
    [16] 徐雷, 赵有源, 王国益, 王兆永. Al原子高激发态nf2F光谱与Stark效应观察. 物理学报, 1989, 38(10): 1658-1664. doi: 10.7498/aps.38.1658
    [17] 刘磊, 李家明. Fr原子的激发态结构. 物理学报, 1988, 37(12): 2053-2056. doi: 10.7498/aps.37.2053
    [18] 李白文, 李名生. Li原子激发态的电子关联计算. 物理学报, 1986, 35(8): 1055-1061. doi: 10.7498/aps.35.1055
    [19] 梁晓玲, 李家明. 激发态原子振子强度密度极小点. 物理学报, 1985, 34(11): 1479-1487. doi: 10.7498/aps.34.1479
    [20] 朱熙文. 高激发态钠原子的量子拍实验的某些分析. 物理学报, 1981, 30(12): 1688-1692. doi: 10.7498/aps.30.1688
计量
  • 文章访问数:  5592
  • PDF下载量:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-13
  • 修回日期:  2017-01-20
  • 刊出日期:  2017-05-05

/

返回文章
返回