搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

结合可视图的多状态交通流时间序列特性分析

邢雪 于德新 田秀娟 王世广

引用本文:
Citation:

结合可视图的多状态交通流时间序列特性分析

邢雪, 于德新, 田秀娟, 王世广

Analysis of multi-state traffic flow time series properties using visibility graph

Xing Xue, Yu De-Xin, Tian Xiu-Juan, Wang Shi-Guang
PDF
导出引用
  • 交通流时间序列的研究主要采用数据挖掘和机器学习的方法,这些“黑箱”挖掘方法很难直观反映序列特性.为增强交通流时间序列及其特征分析的可视化性,结合可视图理论来构建交通流时间序列的关联网络,从复杂网络角度实现交通流时间序列的特性分析.在网络构建的过程中,考虑到不同交通状态下交通流表征具有的差异性,首先利用交通流参量的相关性对交通流状态进行分类,然后构建不同交通状态下的时间序列复杂网络,并对这些网络的特征属性给出统计分析,如度分布、聚类系数、网络直径、模块化等.研究表明,可视图法可为交通流时间序列映射到网络提供有效途径,并且不同状态下交通流时间序列构建的复杂网络的模块化、聚类系数和度分布等统计特征呈现一定的变化规律,为交通流运行态势的研究提供了可视化的分析角度.
    A traffic flow time series is a sequence of traffic detection parameters in chronological order. This differs from a general quantitative data sequence in that the time series includes a time attribute that contains not only the data with time characteristics, but also the distribution of the data itself. To date, studies of traffic time series have primarily adopted data mining methods consisting of data mining and machine learning methods–similar sequence search, dimension reduction, clustering, classification, pattern analysis, prediction, etc. In order to improve the visualization of traffic flow time series and feature analyses, a proposed method builds the association networks of traffic flow time series by using visibility graph theory. This approach differs from traditional traffic flow theory as it performs feature analysis of traffic flow time series from the perspective of complex networks, and then analyzes the relationship between the characteristics of the structure in the visual network and the state characteristics of the traffic flow. The proposed method also takes into account the different traffic flow time sequences that correspond to different traffic states.In the network building process using the proposed method, the traffic flow is classified by correlating the traffic flow parameters to the structure of the complex time series networks under different traffic conditions through considering the changes in traffic flow characteristics under various traffic conditions. Next, statistical analyses of the signs and attributes of the networks (e.g. degree distribution, clustering coefficient, network diameter, and modularization) are conducted. The analysis results show that the proposed visibility graph method can provide an effective approach to mapping traffic flow time series to the network. Moreover, the modularity, clustering coefficient, and degree distribution of the traffic flow time series networks in different traffic states show specifically varying patterns, providing a way to visually analyze the trends in traffic flow operation. When the traffic condition is at level 1, the distribution of the scattered points of the network conforms to a power law distribution. When the traffic condition is at any other level, the distribution of the scattered points of the network is consistent with a Gaussian distribution. The modularity of the time series network also shows some statistical characteristics, that is, the number of modules grows rapidly when the traffic state switches from smooth to moderate congestion, but decreases slowly when the traffic state switches from moderate congestion to serious congestion. These characteristics can be used to distinguish different traffic states, providing more perspective to understand different traffic scenarios. In this work we preliminarily study the attributes of traffic time series based on the proposed visibility graph method. Future efforts will continue to compare various methods of time series network construction to determine the pros and cons of each method for further analysis.
      通信作者: 邢雪, patricia_xx@126.com
    • 基金项目: 国家自然科学基金(批准号:51308248)和国家科技支撑计划(批准号:2014BAG03B03)资助的课题.
      Corresponding author: Xing Xue, patricia_xx@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51308248) and the National Key Technology Support Program of China (Grant No. 2014BAG03B03).
    [1]

    He Z C, Li Z T, Zhao J M 2010 J. Sw. Jiaotong Univ. 45 946 (in Chinese)[何兆成, 黎志涛, 赵建明 2010 西南交通大学学报 45 946]

    [2]

    Dou H L, Liu H D, Wu Z Z, Yang X G 2009 J. Tongji Univ. (Natural Science Edition) 37 486 (in Chinese)[窦慧丽, 刘好德, 吴志周, 杨晓光 2009 同济大学学报(自然科学版) 37 486]

    [3]

    Xing X, Yu D X, Tian X J, Cheng Z Y 2016 J. Huazhong Univ. Sci. Technol. (Natural Science Edition) 44 160808 (in Chinese)[邢雪, 于德新, 田秀娟, 程泽阳 2016 华中科技大学学报(自然科学版) 44 160808]

    [4]

    Zhang Y M, Wu X J, Bai S L 2013 Acta Phys. Sin. 62 190509 (in Chinese)[张玉梅, 吴晓军, 白树林 2013 物理学报 62 190509]

    [5]

    Treiber M, Kesting A, Helbing D 2010 Transp. Res. B 44 983

    [6]

    Ling X, Hu M B, Jiang R, Wu Q S 2010 Phys. Rev. E 81 16113

    [7]

    Gao Z K, Jin N D, Yang D, Zhai L S, Du M 2012 Acta Phys. Sin. 61 120510 (in Chinese)[高忠科, 金宁德, 杨丹, 翟路生, 杜萌 2012 物理学报 61 120510]

    [8]

    Gao X Y, An H Z, Fang W 2012 Acta Phys. Sin. 61 098902 (in Chinese)[高湘昀, 安海忠, 方伟 2012 物理学报 61 098902]

    [9]

    Gao Z, Jin N 2012 Physica A 391 3005

    [10]

    Zhang J, Cao X B, Du W B, Cai K Q 2010 Physica A 389 3922

    [11]

    Arora P, Deepali D, Varshney S 2016 Proc. Comput. Sci. 78 507

    [12]

    Madhulatha T 2012 Int. Organ. Sci. Res. J. Eng. 2 719

    [13]

    Mishra N, Motwani R 2004 Mach. Learn. 56 35

    [14]

    Lucas L, Bartolo L, Fernando B, Jordi L, Juan C N 2008 Proc. Natl. Acad. Sci. 105 4972

    [15]

    Lacasa L, Toral R 2010 Phys. Rev. E 82 36120

    [16]

    Zhang J, Sun J F, Luo X D, Zhang K, Nakamura T, Small M 2008 Physica D 237 2856

    [17]

    Zhang J, Small M 2006 Phys. Rev. Lett. 96 238701

    [18]

    Xu X, Zhang J, Small M 2008 Proc. Natl. Acad. Sci. 105 19601

    [19]

    Donner R V, Zou Y, Donges J F, Marwan N, Kurths J 2010 Phys. Rev. E 81 15101

    [20]

    Yang Y, Yang H J 2008 Physica A 387 1381

    [21]

    Tang J, Wang Y, Liu F 2013 Physica A 392 4192

  • [1]

    He Z C, Li Z T, Zhao J M 2010 J. Sw. Jiaotong Univ. 45 946 (in Chinese)[何兆成, 黎志涛, 赵建明 2010 西南交通大学学报 45 946]

    [2]

    Dou H L, Liu H D, Wu Z Z, Yang X G 2009 J. Tongji Univ. (Natural Science Edition) 37 486 (in Chinese)[窦慧丽, 刘好德, 吴志周, 杨晓光 2009 同济大学学报(自然科学版) 37 486]

    [3]

    Xing X, Yu D X, Tian X J, Cheng Z Y 2016 J. Huazhong Univ. Sci. Technol. (Natural Science Edition) 44 160808 (in Chinese)[邢雪, 于德新, 田秀娟, 程泽阳 2016 华中科技大学学报(自然科学版) 44 160808]

    [4]

    Zhang Y M, Wu X J, Bai S L 2013 Acta Phys. Sin. 62 190509 (in Chinese)[张玉梅, 吴晓军, 白树林 2013 物理学报 62 190509]

    [5]

    Treiber M, Kesting A, Helbing D 2010 Transp. Res. B 44 983

    [6]

    Ling X, Hu M B, Jiang R, Wu Q S 2010 Phys. Rev. E 81 16113

    [7]

    Gao Z K, Jin N D, Yang D, Zhai L S, Du M 2012 Acta Phys. Sin. 61 120510 (in Chinese)[高忠科, 金宁德, 杨丹, 翟路生, 杜萌 2012 物理学报 61 120510]

    [8]

    Gao X Y, An H Z, Fang W 2012 Acta Phys. Sin. 61 098902 (in Chinese)[高湘昀, 安海忠, 方伟 2012 物理学报 61 098902]

    [9]

    Gao Z, Jin N 2012 Physica A 391 3005

    [10]

    Zhang J, Cao X B, Du W B, Cai K Q 2010 Physica A 389 3922

    [11]

    Arora P, Deepali D, Varshney S 2016 Proc. Comput. Sci. 78 507

    [12]

    Madhulatha T 2012 Int. Organ. Sci. Res. J. Eng. 2 719

    [13]

    Mishra N, Motwani R 2004 Mach. Learn. 56 35

    [14]

    Lucas L, Bartolo L, Fernando B, Jordi L, Juan C N 2008 Proc. Natl. Acad. Sci. 105 4972

    [15]

    Lacasa L, Toral R 2010 Phys. Rev. E 82 36120

    [16]

    Zhang J, Sun J F, Luo X D, Zhang K, Nakamura T, Small M 2008 Physica D 237 2856

    [17]

    Zhang J, Small M 2006 Phys. Rev. Lett. 96 238701

    [18]

    Xu X, Zhang J, Small M 2008 Proc. Natl. Acad. Sci. 105 19601

    [19]

    Donner R V, Zou Y, Donges J F, Marwan N, Kurths J 2010 Phys. Rev. E 81 15101

    [20]

    Yang Y, Yang H J 2008 Physica A 387 1381

    [21]

    Tang J, Wang Y, Liu F 2013 Physica A 392 4192

  • [1] 马志怡, 杨小冬, 何爱军, 马璐, 王俊. 基于多路可视图的健康与心梗患者心电图信号复杂网络识别. 物理学报, 2022, 71(5): 050501. doi: 10.7498/aps.71.20211656
    [2] 马金龙, 张俊峰, 张冬雯, 张红斌. 基于通信序列熵的复杂网络传输容量. 物理学报, 2021, 70(7): 078902. doi: 10.7498/aps.70.20201300
    [3] 马志怡, 杨小冬, 何爱军, 马璐, 王俊. 基于多路可视图的健康与心梗患者ECG信号复杂网络识别. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211656
    [4] 汪丽娜, 成媛媛, 臧臣瑞. 基于seasonal-trend-loess方法的符号化时间序列网络. 物理学报, 2019, 68(23): 238901. doi: 10.7498/aps.68.20190794
    [5] 陈单, 石丹丹, 潘贵军. 复杂网络电输运性能与通信序列熵之间的关联. 物理学报, 2019, 68(11): 118901. doi: 10.7498/aps.68.20190230
    [6] 丁连红, 孙斌, 时鹏. 知识图谱复杂网络特性的实证研究与分析. 物理学报, 2019, 68(12): 128902. doi: 10.7498/aps.68.20190106
    [7] 苏臻, 高超, 李向华. 节点中心性对复杂网络传播模式的影响分析. 物理学报, 2017, 66(12): 120201. doi: 10.7498/aps.66.120201
    [8] 武喜萍, 杨红雨, 韩松臣. 基于复杂网络理论的多元混合空管技术保障系统网络特征分析. 物理学报, 2016, 65(14): 140203. doi: 10.7498/aps.65.140203
    [9] 李钊, 郭燕慧, 徐国爱, 胡正名. 复杂网络中带有应急恢复机理的级联动力学分析. 物理学报, 2014, 63(15): 158901. doi: 10.7498/aps.63.158901
    [10] 肖尧, 郑建风. 复杂交通运输网络上的拥挤与效率问题研究. 物理学报, 2013, 62(17): 178902. doi: 10.7498/aps.62.178902
    [11] 任卓明, 刘建国, 邵凤, 胡兆龙, 郭强. 复杂网络中最小K-核节点的传播能力分析. 物理学报, 2013, 62(10): 108902. doi: 10.7498/aps.62.108902
    [12] 尹宁, 徐桂芝, 周茜. 磁刺激穴位复杂脑功能网络构建与分析. 物理学报, 2013, 62(11): 118704. doi: 10.7498/aps.62.118704
    [13] 郑啸, 陈建平, 邵佳丽, 别立东. 基于复杂网络理论的北京公交网络拓扑性质分析. 物理学报, 2012, 61(19): 190510. doi: 10.7498/aps.61.190510
    [14] 李霞, 张镭. 基于后向轨迹追踪模式分析SACOL气溶胶来源及其光学特性. 物理学报, 2012, 61(2): 023402. doi: 10.7498/aps.61.023402
    [15] 高湘昀, 安海忠, 方伟. 基于复杂网络的时间序列双变量相关性波动研究. 物理学报, 2012, 61(9): 098902. doi: 10.7498/aps.61.098902
    [16] 吕天阳, 谢文艳, 郑纬民, 朴秀峰. 加权复杂网络社团的评价指标及其发现算法分析. 物理学报, 2012, 61(21): 210511. doi: 10.7498/aps.61.210511
    [17] 高忠科, 金宁德, 杨丹, 翟路生, 杜萌. 多元时间序列复杂网络流型动力学分析. 物理学报, 2012, 61(12): 120510. doi: 10.7498/aps.61.120510
    [18] 周婷婷, 金宁德, 高忠科, 罗跃斌. 基于有限穿越可视图的时间序列网络模型. 物理学报, 2012, 61(3): 030506. doi: 10.7498/aps.61.030506
    [19] 李树彬, 吴建军, 高自友, 林勇, 傅白白. 基于复杂网络的交通拥堵与传播动力学分析. 物理学报, 2011, 60(5): 050701. doi: 10.7498/aps.60.050701
    [20] 宋青松, 冯祖仁, 李人厚. 用于混沌时间序列预测的多簇回响状态网络. 物理学报, 2009, 58(7): 5057-5064. doi: 10.7498/aps.58.5057
计量
  • 文章访问数:  6846
  • PDF下载量:  367
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-19
  • 修回日期:  2017-07-23
  • 刊出日期:  2017-12-05

/

返回文章
返回