搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

[Ca24Al28O64]4+:4e-电子化合物的制备及其电输运特性

冯琦 张忻 刘洪亮 赵吉平 江浩 肖怡新 李凡 张久兴

引用本文:
Citation:

[Ca24Al28O64]4+:4e-电子化合物的制备及其电输运特性

冯琦, 张忻, 刘洪亮, 赵吉平, 江浩, 肖怡新, 李凡, 张久兴

Fabrication and electrical transport characteristics of the polycrystalline Ca12Al14O33 electride

Feng Qi, Zhang Xin, Liu Hong-Liang, Zhao Ji-Ping, Jiang Hao, Xiao Yi-Xin, Li Fan, Zhang Jiu-Xing
PDF
导出引用
  • 金属氧化物电子化合物[Ca24Al28O64]4+:4e-(C12A7:e-)因其天然的纳米尺度笼腔结构带来的新奇物理化学特性而在阴极电子源材料、超导和电化学反应等领域有着独特的应用价值.本文系统研究了以CaCO3和Al2O3粉末为原料,采用固相反应-放电等离子烧结-活性金属Ti还原相结合的方法制备C12A7:e-的工艺条件及其电输运特性.实验结果表明:在封装石英管真空度为10-5 Pa,还原温度为1100℃,还原时间为1030 h条件下,成功制得载流子浓度为约10181020 cm-3的C12A7:e-块体材料.第一性原理计算得到的C12A7:e-能带结构和态密度表明,笼腔内的O2-完全被e-取代后,C12A7:e-费米能级明显穿过笼腔导带,说明位于笼腔内自由运动的电子使C12A7从绝缘体转变成导体,同时费米面附近的笼腔电子易于从笼腔导带跃迁至框架导带,在电场或热场的作用下电子更容易逸出,这也是C12A7:e-逸出功低的主要原因.
    The[Ca24Al28O64]4+:4e- (C12A7:e-) electride composed of densely packed, subnanometer-sized cages. This unique structure makes it possess distinctive applications in fields of electronic emission, superconductor, electrochemical reaction. In this paper, we explore a new method to prepare the bulk of C12A7:e- electride. The following areare systematically studied in this work. 1) the condition of preparing bulk of C12A7:e- electride by solid reaction combining spark plasma sintering and reduction with Ti particles at high temperature, CaCO3 and Al2O3 powders are used as raw materials; 2) the first principle calculations of band structure and density of states of the C12A7:e- electride; 3) the analysis of the electrical transport properties of the C12A7:e- electride. The bulk of C12A7:e- electride is successfully prepared by this method, so the results show that the bulk of C12A7:e- electrode with the electron concentration 1018-1020 cm-3 is synthesized at 1100 ℃ and a vacuum pressure of 10-5 Pa for 10-30 h. In the process of Ti reduction, Ti particles become evaporated and deposit on the surface of C12A7, the free O2- atom in the cages diffuse to the sample surface, the Ti vapor reacts with the O2-, forming a loose TiO_x layer. In order to maintain electrical neutrality, the electrons of the free O2- atom leave from the cages, forming the C12A7:e- electride. In addition, the loose TiO_x layer also provides a channel for the diffusion of the O2- atoms in the cage, ensuring the continuation of the reduction reaction. The calculated band structure and density of states of the bulk C12A7:e- electride show that when electrons replace the O2- atoms in the cage, the Fermi level of C12A7:e- crosses over the cage conduction band (CCB). Thus the free movement of the electron is the main reason for the insulator C12A7 to convert into conductor C12A7:e-. At the same time the electrons near the Fermi level in the cages are easy to jump from the CCB to the frame conduction band (FCB). Combination of the above experimental results suggests that the electrons in cages are easier to escape to vacuum under the action of electric field or thermal field, which is the main reason for low work function of C12A7:e-. This way provides an new approach to the realization of the insulator C12A7 converting into C12A7:e- electride. And the C12A7:e- is a good electronic emission material due to low work function, low working temperature, and highly anti-poisoning ability, so this method of preparing bulk C12A7:e- electride provides a good new way to synthesize a new electronic emission material.
      通信作者: 张忻, zhxin@bjut.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51371010,51572066,50801002)和北京市自然科学基金(批准号:2112007)资助课题.
      Corresponding author: Zhang Xin, zhxin@bjut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51371010, 51572066, 50801002) and the Natural Science Foundation of Beijing, China(Grant No. 2112007).
    [1]

    Kerrour W, Kabir A, Schmerber G, Boudjema B, Zerkout S, Bouabellou A, Sedrati C 2016 J. Mater. Sci.:Mater. Electron. 27 10106

    [2]

    Kim S W, Matsuishi S, Nomura T, Kubota Y, Takata M, Hayashi K, Kamiya T, Hirano M, Hosono H 2007 Nano Lett. 7 1138

    [3]

    Kurashige K, Toda Y, Matstuishi S, Hayashi K, Hirano M, Hosono H 2006 Cryst. Growth Des. 6 1602

    [4]

    Kiyanagi R, Richardson J W, Sakamoto N, Yoshimura M 2008 Acta Cryst. 179 2365

    [5]

    Watanabe S, Watanabe T, Ito K, Miyakawa N, Ito S, Hosono H, Mikoshiba S 2011 Sci. Technol. Adv. Mat. 12 034410

    [6]

    Pan R K, Feng S, Tao H Z 2017 Mat. Sci. Eng. 67 1

    [7]

    Yang S, Kondo J N, Hayashi K, Hirano M, Domen K, Hosono H 2004 Appl. Catal. A:Gen. 277 239

    [8]

    Park J K, Shimomura T, Yamanaka M, Watauchi S, Kishio K, Tanaka I 2005 Cryst. Res. Technol. 40 329

    [9]

    Miyakawa M, Kim S W, Hirano M, Kohama Y, Kawaji H, Atake T, Ikegami H, Kono K, Hosono H 2007 J. Am. Chem. Soc. 129 7270

    [10]

    Li J, Yin B, Fuchigami T, Inagi S, Hosono H, Ito S 2012 Electrochem. Commun. 17 52

    [11]

    Kitano M, Inoue Y, Yamazaki Y, Hayashi F, Kanbara S, Matsuishi S, Yokoyama T, Kim S W, Hara M, Hosono H 2012 Nat. Chem. 4 934

    [12]

    Bao L H, Tao R Y, Tegus O, Huang Y K, Leng H Q, de Visser A 2017 Acta Phys. Sin. 66 186102 (in Chinese)[包黎红, 陶如玉, 特古斯, 黄颖楷, 冷华倩, Anne de Visser 2017 物理学报 66 186102]

    [13]

    Kim S W, Hayashi K, Hirano M, Hosono H, Tanaka I 2006 J. Am. Ceram. Soc. 89 294

    [14]

    Kim S W, Toda Y, Hayashi K, Hirano M, Hosono H 2006 Chem. Mater. 18 1938

    [15]

    Toda Y, Matsuishi S, Hayashi K, Ueda K, Kamiya T, Hirano M, Hosono H 2004 Adv. Mater. 16 685

    [16]

    Satoru M, Yoshitake T, Masashi M, Katsuro H, Toshio K, Masahiro H, Lsao T, Hideo H 2003 Science 301 626

    [17]

    Cao D, Liu B, Yu H L, Hu W Y, Cai M Q 2015 Eur. Phys. J. B 88 75

    [18]

    Liu B, Wu L J, Zhao Y Q, Wang L Z, Cai M Q 2016 Eur. Phys. J. B 89 80

    [19]

    Wu L J, Zhao Y Q, Chen C W, Wang L Z, Liu B, Cai M Q 2016 Chin. Phys. B 25 107202

    [20]

    Wang L Z, Zhao Y Q, Liu B, Wu L J, Cai M Q 2016 Phys. Chem. Chem. Phys. 18 22188

    [21]

    Jiang P G, Wang Z B, Yan Y B, Liu W J 2017 Acta Phys. Sin. 66 246801 (in Chinese)[姜国平, 汪正兵, 闫永播, 刘文杰 2017 物理学报 66 246801]

    [22]

    Sushko P V, Shluger A L, Hirano M, Hosono H 2007 J. Am. Chem. Soc. 129 942

  • [1]

    Kerrour W, Kabir A, Schmerber G, Boudjema B, Zerkout S, Bouabellou A, Sedrati C 2016 J. Mater. Sci.:Mater. Electron. 27 10106

    [2]

    Kim S W, Matsuishi S, Nomura T, Kubota Y, Takata M, Hayashi K, Kamiya T, Hirano M, Hosono H 2007 Nano Lett. 7 1138

    [3]

    Kurashige K, Toda Y, Matstuishi S, Hayashi K, Hirano M, Hosono H 2006 Cryst. Growth Des. 6 1602

    [4]

    Kiyanagi R, Richardson J W, Sakamoto N, Yoshimura M 2008 Acta Cryst. 179 2365

    [5]

    Watanabe S, Watanabe T, Ito K, Miyakawa N, Ito S, Hosono H, Mikoshiba S 2011 Sci. Technol. Adv. Mat. 12 034410

    [6]

    Pan R K, Feng S, Tao H Z 2017 Mat. Sci. Eng. 67 1

    [7]

    Yang S, Kondo J N, Hayashi K, Hirano M, Domen K, Hosono H 2004 Appl. Catal. A:Gen. 277 239

    [8]

    Park J K, Shimomura T, Yamanaka M, Watauchi S, Kishio K, Tanaka I 2005 Cryst. Res. Technol. 40 329

    [9]

    Miyakawa M, Kim S W, Hirano M, Kohama Y, Kawaji H, Atake T, Ikegami H, Kono K, Hosono H 2007 J. Am. Chem. Soc. 129 7270

    [10]

    Li J, Yin B, Fuchigami T, Inagi S, Hosono H, Ito S 2012 Electrochem. Commun. 17 52

    [11]

    Kitano M, Inoue Y, Yamazaki Y, Hayashi F, Kanbara S, Matsuishi S, Yokoyama T, Kim S W, Hara M, Hosono H 2012 Nat. Chem. 4 934

    [12]

    Bao L H, Tao R Y, Tegus O, Huang Y K, Leng H Q, de Visser A 2017 Acta Phys. Sin. 66 186102 (in Chinese)[包黎红, 陶如玉, 特古斯, 黄颖楷, 冷华倩, Anne de Visser 2017 物理学报 66 186102]

    [13]

    Kim S W, Hayashi K, Hirano M, Hosono H, Tanaka I 2006 J. Am. Ceram. Soc. 89 294

    [14]

    Kim S W, Toda Y, Hayashi K, Hirano M, Hosono H 2006 Chem. Mater. 18 1938

    [15]

    Toda Y, Matsuishi S, Hayashi K, Ueda K, Kamiya T, Hirano M, Hosono H 2004 Adv. Mater. 16 685

    [16]

    Satoru M, Yoshitake T, Masashi M, Katsuro H, Toshio K, Masahiro H, Lsao T, Hideo H 2003 Science 301 626

    [17]

    Cao D, Liu B, Yu H L, Hu W Y, Cai M Q 2015 Eur. Phys. J. B 88 75

    [18]

    Liu B, Wu L J, Zhao Y Q, Wang L Z, Cai M Q 2016 Eur. Phys. J. B 89 80

    [19]

    Wu L J, Zhao Y Q, Chen C W, Wang L Z, Liu B, Cai M Q 2016 Chin. Phys. B 25 107202

    [20]

    Wang L Z, Zhao Y Q, Liu B, Wu L J, Cai M Q 2016 Phys. Chem. Chem. Phys. 18 22188

    [21]

    Jiang P G, Wang Z B, Yan Y B, Liu W J 2017 Acta Phys. Sin. 66 246801 (in Chinese)[姜国平, 汪正兵, 闫永播, 刘文杰 2017 物理学报 66 246801]

    [22]

    Sushko P V, Shluger A L, Hirano M, Hosono H 2007 J. Am. Chem. Soc. 129 942

  • [1] 丁莉洁, 张笑天, 郭欣宜, 薛阳, 林常青, 黄丹. SrSnO3作为透明导电氧化物的第一性原理研究. 物理学报, 2023, 72(1): 013101. doi: 10.7498/aps.72.20221544
    [2] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211631
    [3] 钟淑琳, 仇家豪, 罗文崴, 吴木生. 稀土掺杂对LiFePO4性能影响的第一性原理研究. 物理学报, 2021, 70(15): 158203. doi: 10.7498/aps.70.20210227
    [4] 闫小童, 侯育花, 郑寿红, 黄有林, 陶小马. Ga, Ge, As掺杂对锂离子电池正极材料Li2CoSiO4的电化学特性和电子结构影响的第一性原理研究. 物理学报, 2019, 68(18): 187101. doi: 10.7498/aps.68.20190503
    [5] 张淑亭, 孙志, 赵磊. 石墨烯纳米片大自旋特性第一性原理研究. 物理学报, 2018, 67(18): 187102. doi: 10.7498/aps.67.20180867
    [6] 姜平国, 汪正兵, 闫永播, 刘文杰. W20O58(010)表面氢吸附机理的第一性原理研究. 物理学报, 2017, 66(24): 246801. doi: 10.7498/aps.66.246801
    [7] 叶红军, 王大威, 姜志军, 成晟, 魏晓勇. 钙钛矿结构SnTiO3铁电相变的第一性原理研究. 物理学报, 2016, 65(23): 237101. doi: 10.7498/aps.65.237101
    [8] 彭琼, 何朝宇, 李金, 钟建新. MoSi2薄膜电子性质的第一性原理研究. 物理学报, 2015, 64(4): 047102. doi: 10.7498/aps.64.047102
    [9] 邓娇娇, 刘波, 顾牡, 刘小林, 黄世明, 倪晨. 伽马CuX(X=Cl,Br,I)的电子结构和光学性质的第一性原理计算. 物理学报, 2012, 61(3): 036105. doi: 10.7498/aps.61.036105
    [10] 王晓中, 林理彬, 何捷, 陈军. 第一性原理方法研究He掺杂Al晶界力学性质. 物理学报, 2011, 60(7): 077104. doi: 10.7498/aps.60.077104
    [11] 汪志刚, 张杨, 文玉华, 朱梓忠. ZnO原子链的结构稳定性和电子性质的第一性原理研究. 物理学报, 2010, 59(3): 2051-2056. doi: 10.7498/aps.59.2051
    [12] 顾牡, 林玲, 刘波, 刘小林, 黄世明, 倪晨. M’型GdTaO4电子结构的第一性原理研究. 物理学报, 2010, 59(4): 2836-2842. doi: 10.7498/aps.59.2836
    [13] 吕泉, 黄伟其, 王晓允, 孟祥翔. Si(111)面上氮原子薄膜的电子态密度第一性原理计算及分析. 物理学报, 2010, 59(11): 7880-7884. doi: 10.7498/aps.59.7880
    [14] 吴红丽, 赵新青, 宫声凯. Nb掺杂影响NiTi金属间化合物电子结构的第一性原理计算. 物理学报, 2010, 59(1): 515-520. doi: 10.7498/aps.59.515
    [15] 谭兴毅, 金克新, 陈长乐, 周超超. YFe2B2电子结构的第一性原理计算. 物理学报, 2010, 59(5): 3414-3417. doi: 10.7498/aps.59.3414
    [16] 胡方, 明星, 范厚刚, 陈岗, 王春忠, 魏英进, 黄祖飞. 梯形化合物NaV2O4F电子结构的第一性原理研究. 物理学报, 2009, 58(2): 1173-1178. doi: 10.7498/aps.58.1173
    [17] 宋庆功, 王延峰, 宋庆龙, 康建海, 褚 勇. 插层化合物Ag1/4TiSe2电子结构的第一性原理研究. 物理学报, 2008, 57(12): 7827-7832. doi: 10.7498/aps.57.7827
    [18] 明 星, 范厚刚, 胡 方, 王春忠, 孟 醒, 黄祖飞, 陈 岗. 自旋-Peierls化合物GeCuO3电子结构的第一性原理研究. 物理学报, 2008, 57(4): 2368-2373. doi: 10.7498/aps.57.2368
    [19] 吴红丽, 赵新青, 宫声凯. Nb掺杂对TiO2/NiTi界面电子结构影响的第一性原理计算. 物理学报, 2008, 57(12): 7794-7799. doi: 10.7498/aps.57.7794
    [20] 刘利花, 张 颖, 吕广宏, 邓胜华, 王天民. Sr偏析Al晶界结构的第一性原理计算. 物理学报, 2008, 57(7): 4428-4433. doi: 10.7498/aps.57.4428
计量
  • 文章访问数:  5594
  • PDF下载量:  173
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-01
  • 修回日期:  2017-12-05
  • 刊出日期:  2019-02-20

/

返回文章
返回