搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非均匀水流中涌浪运动对水下量子通信性能的影响

聂敏 潘越 杨光 孙爱晶 禹赛雅 张美玲 裴昌幸

引用本文:
Citation:

非均匀水流中涌浪运动对水下量子通信性能的影响

聂敏, 潘越, 杨光, 孙爱晶, 禹赛雅, 张美玲, 裴昌幸

Influence of surge movement in non-uniform water flow on performance of underwater quantum communication

Nie Min, Pan Yue, Yang Guang, Sun Ai-Jing, Yu Sai-Ya, Zhang Mei-Ling, Pei Chang-Xing
PDF
导出引用
  • 涌浪运动是非均匀水流中的一种非线性运动,是常见的海洋运动形式之一.在进行水下量子通信时,会对光量子信号的传输造成极大的影响.然而,有关涌浪运动造成量子通信信道参数变化的研究,迄今尚未展开.为了研究涌浪运动对水下量子通信性能的影响,首先对涌浪运动的传播建立了数学模型并分析了其频谱特性.针对退极化信道,提出了涌浪运动与水下量子通信信道纠缠和信道容量的定量关系,并对量子密钥分发过程中误码率的影响进行了分析.仿真结果表明,当海面风速在0–20.5 m/s变化时,随着传播周期逐渐增大,信道纠缠度由0.0012逐渐增加到0.8426,信道容量由0.8736减小到0.1024,密钥分发过程中,量子误码率由0.1651增加到0.4812.由此可见,涌浪运动对于水下量子通信性能有着明显的影响.因此,在进行水下量子通信时,应根据涌浪运动的不同程度,自适应调整系统参数.
    Quantum communication is brand new way of communication in which quantum entanglement is used to transmit information. It is an interdisciplinary subject combining quantum informatics with modern communication theory. Motivated by the communication requirements for underwater sensor networks, submarines, etc., underwater optical communication has been developing rapidly in recent years due to the ideal information security of quantum communication. However, the research on the performance of underwater quantum communication in sea has not yet been fully developed because of a series of factors such as surge, salinity and seaweed and so on. In this paper, the influence of surge in non-uniform water flow on the underwater quantum communication is studied theoretically and experimentally. Firstly, a new Boussinesq equation with a given flow function is derived based on the horizontal and vertical wave velocity of the free surface to represent the free surface boundary conditions. On the other hand, In view of the nonlinear motion of movement, the complexity of change and the randomness of the distribution, the spectrum is used for numerically calculating the surge. The characteristics of wave motion are described by wave height, period and wavelength. Secondly, the influence of surge on the entanglement of underwater quantum channel is analyzed. It is proved that the wave height of surge and the change of the cycle affect quantum communication due to the destruction of the quantum coherence and the reduction in quantum entanglement degree. Thirdly, the influence of surge motion on the quantum channel capacity is studied. The influence of the relation between the wavelength and the transmission cycle on the quantum channel capacity is simulated. The relationship between the physical characteristics of surge wave and the capacity of depolarized channel is established. Fourthly, the influence of surge motion on error rate in quantum key distribution is studied. The simulation results show that when the sea surface wind speed changes in a range of 0-20.5 m/s, the propagation cycle is increased gradually. The channel entanglement is increased from 0.0012 to 0.8426, and the channel capacity is reduced from 0.8736 to 0.1024. In the key distribution process, the quantum bit error rate increases from 0.1651 to 0.4812. Therefore, in underwater quantum communication, the parameters of the system should be adjusted adaptively according to the varying degree of the surge movement.
      通信作者: 潘越, 1601210022@stu.xupt.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61172071,61201194)、陕西省自然科学基础研究计划(批准号:2014JQ8318)、陕西省国际科技合作与交流计划(批准号:2015KW-013)和陕西省教育厅科研计划(批准号:16JK1711)资助的课题.
      Corresponding author: Pan Yue, 1601210022@stu.xupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61172071, 61201194), the Natural Science Research Foundation of Shaanxi Province, China (Grant No. 2014JQ8318), the International Scientific and Technological Cooperation and Exchange Program in Shaanxi Province, China (Grant No. 2015KW-013), and the Scientific Research Program Funded by Shaanxi Provincial Education Department, China (Grant No. 16JK1711).
    [1]

    Peng C Z, Yang T, Bao X H 2005 Phys. Rev. Lett. 94 4

    [2]

    Jin X M, Ren J G, Yang B, Yi Z H, Zhou F, Xu X F, Peng C Z, Wang S K, Yang D, Pan J W, Hu Y F, Jiang S 2010 Nat. Photon. 4 376

    [3]

    Yin J, Ren J G, Lu H 2012 Nature 488 185

    [4]

    Wang J Y, Yang B, Liao S K 2013 Nature Photon. 7 387

    [5]

    Ma X S, Thomas H, Thomas S, Wang D Q, Sebastian K, William N, Bernhard W, Alexandra M, Johannes K, Elena A, Vadim M, Thomas J, Rupert U, Anton Z 2012 Nature 489 269

    [6]

    Nie M, Shang P G, Yang G, Zhang M L, Pei C X 2014 Acta Phys. Sin. 63 240303 (in Chinese) [聂敏, 尚鹏钢, 杨光, 张美玲, 裴昌幸 2014 物理学报 63 240303]

    [7]

    Nie M, Wang Y, Yang G, Zhang M L, Pei C X 2016 Acta Phys. Sin. 65 020303 (in Chinese) [聂敏, 王允, 杨光, 张美玲, 裴昌幸 2016 物理学报 65 020303]

    [8]

    Nie M, Tang S R, Yang G, Zhang M L, Pei C X 2017 Acta Phys. Sin. 66 020303 (in Chinese) [聂敏, 唐守荣, 杨光, 张美玲, 裴昌幸 2017 物理学报 66 020303]

    [9]

    Yoon S B, Liu P L F 1989 J. Fluid Mech. 205 397

    [10]

    Li Y C, Zhang Y G 1996 J. Hydrody. 11 205 (in Chinese) [李玉成, 张永刚 1996 水动力学研究与进展 11 205]

    [11]

    Sverdrup H U, Munk W H 1947 J. Hydrographic Office 601 44

    [12]

    Sverdrup H U 1947 American Geophysical Union. 28 407

    [13]

    Bretschneider C L 1952 American Geophysical Union. 33 381

    [14]

    Wang Y L, Zhang H S, Miao G P 2005 China Ocean Engineering 19 49

    [15]

    Higgins M S 1975 J. Geopbys. Res. 80 2688

    [16]

    Pierson W J, Moscowitz L 1964 J. Geophys. Res. 69 5181

    [17]

    Higgins M S 1970 J. Geophys. Res. 75 6778

    [18]

    Wen S C 1984 Wave Theory and Calculation Principle (Beijing:Science Press) pp203-210 (in Chinese) [文圣常 1984 海浪理论与计算原理 (北京: 科学出版社) 第203–210页]

    [19]

    Zhang Y D 2010 Quantum Mechanics (Beijing: Science Press) p343 (in Chinese) [张永德 2010 量子力学 (北京: 科学出版社) 第343页]

    [20]

    Yin H, Ma H X 2006 Introduction to Quantum Communication in Military (Beijing: Military Science Press) p227 (in Chinese) [尹浩, 马怀新 2006 军事量子通信概论(北京: 军事科学出版社) 第227页]

    [21]

    Yin H, Han Y 2013 Quantum Communications Theory and Technology (Beijing: Publishing House of Electronics Industry) p83 (in Chinese) [尹浩, 韩阳 2013 量子通信原理与技术 (北京: 电子工业出版社) 第83页]

    [22]

    Chakrabarti S K, Cooley R P 1997 Coastal Engineering 16 63

    [23]

    Pan J C, Chen Z H 1996 J. Marine Science Bulletin 5 1 (in Chinese) [潘锦嫦, 陈志宏 1996 海洋通报 5 1]

    [24]

    Nie M, Ren J, Yang G, Zhang M L, Pei C X 2015 Acta Phys. Sin. 64 150301 (in Chinese) [聂敏, 任杰, 杨光, 张美玲, 裴昌幸 2015 物理学报 64 150301]

  • [1]

    Peng C Z, Yang T, Bao X H 2005 Phys. Rev. Lett. 94 4

    [2]

    Jin X M, Ren J G, Yang B, Yi Z H, Zhou F, Xu X F, Peng C Z, Wang S K, Yang D, Pan J W, Hu Y F, Jiang S 2010 Nat. Photon. 4 376

    [3]

    Yin J, Ren J G, Lu H 2012 Nature 488 185

    [4]

    Wang J Y, Yang B, Liao S K 2013 Nature Photon. 7 387

    [5]

    Ma X S, Thomas H, Thomas S, Wang D Q, Sebastian K, William N, Bernhard W, Alexandra M, Johannes K, Elena A, Vadim M, Thomas J, Rupert U, Anton Z 2012 Nature 489 269

    [6]

    Nie M, Shang P G, Yang G, Zhang M L, Pei C X 2014 Acta Phys. Sin. 63 240303 (in Chinese) [聂敏, 尚鹏钢, 杨光, 张美玲, 裴昌幸 2014 物理学报 63 240303]

    [7]

    Nie M, Wang Y, Yang G, Zhang M L, Pei C X 2016 Acta Phys. Sin. 65 020303 (in Chinese) [聂敏, 王允, 杨光, 张美玲, 裴昌幸 2016 物理学报 65 020303]

    [8]

    Nie M, Tang S R, Yang G, Zhang M L, Pei C X 2017 Acta Phys. Sin. 66 020303 (in Chinese) [聂敏, 唐守荣, 杨光, 张美玲, 裴昌幸 2017 物理学报 66 020303]

    [9]

    Yoon S B, Liu P L F 1989 J. Fluid Mech. 205 397

    [10]

    Li Y C, Zhang Y G 1996 J. Hydrody. 11 205 (in Chinese) [李玉成, 张永刚 1996 水动力学研究与进展 11 205]

    [11]

    Sverdrup H U, Munk W H 1947 J. Hydrographic Office 601 44

    [12]

    Sverdrup H U 1947 American Geophysical Union. 28 407

    [13]

    Bretschneider C L 1952 American Geophysical Union. 33 381

    [14]

    Wang Y L, Zhang H S, Miao G P 2005 China Ocean Engineering 19 49

    [15]

    Higgins M S 1975 J. Geopbys. Res. 80 2688

    [16]

    Pierson W J, Moscowitz L 1964 J. Geophys. Res. 69 5181

    [17]

    Higgins M S 1970 J. Geophys. Res. 75 6778

    [18]

    Wen S C 1984 Wave Theory and Calculation Principle (Beijing:Science Press) pp203-210 (in Chinese) [文圣常 1984 海浪理论与计算原理 (北京: 科学出版社) 第203–210页]

    [19]

    Zhang Y D 2010 Quantum Mechanics (Beijing: Science Press) p343 (in Chinese) [张永德 2010 量子力学 (北京: 科学出版社) 第343页]

    [20]

    Yin H, Ma H X 2006 Introduction to Quantum Communication in Military (Beijing: Military Science Press) p227 (in Chinese) [尹浩, 马怀新 2006 军事量子通信概论(北京: 军事科学出版社) 第227页]

    [21]

    Yin H, Han Y 2013 Quantum Communications Theory and Technology (Beijing: Publishing House of Electronics Industry) p83 (in Chinese) [尹浩, 韩阳 2013 量子通信原理与技术 (北京: 电子工业出版社) 第83页]

    [22]

    Chakrabarti S K, Cooley R P 1997 Coastal Engineering 16 63

    [23]

    Pan J C, Chen Z H 1996 J. Marine Science Bulletin 5 1 (in Chinese) [潘锦嫦, 陈志宏 1996 海洋通报 5 1]

    [24]

    Nie M, Ren J, Yang G, Zhang M L, Pei C X 2015 Acta Phys. Sin. 64 150301 (in Chinese) [聂敏, 任杰, 杨光, 张美玲, 裴昌幸 2015 物理学报 64 150301]

  • [1] 卫容宇, 聂敏, 杨光, 张美玲, 孙爱晶, 裴昌幸. 基于软件定义量子通信的自由空间量子通信信道参数自适应调整策略. 物理学报, 2019, 68(14): 140302. doi: 10.7498/aps.68.20190462
    [2] 贺锋涛, 杜迎, 张建磊, 房伟, 李碧丽, 朱云周. Gamma-gamma海洋各向异性湍流下脉冲位置调制无线光通信的误码率研究. 物理学报, 2019, 68(16): 164206. doi: 10.7498/aps.68.20190452
    [3] 郑晓毅, 龙银香. 基于cluster态的信道容量可控的可控量子安全直接通信方案. 物理学报, 2017, 66(18): 180303. doi: 10.7498/aps.66.180303
    [4] 闫夏超, 朱江, 张蜡宝, 邢强林, 陈亚军, 朱宏权, 李舰艇, 康琳, 陈健, 吴培亨. 基于超导纳米线单光子探测器深空激光通信模型及误码率研究. 物理学报, 2017, 66(19): 198501. doi: 10.7498/aps.66.198501
    [5] 李熙涵. 量子直接通信. 物理学报, 2015, 64(16): 160307. doi: 10.7498/aps.64.160307
    [6] 杨光, 廉保旺, 聂敏. 振幅阻尼信道量子隐形传态保真度恢复机理. 物理学报, 2015, 64(1): 010303. doi: 10.7498/aps.64.010303
    [7] 杨光, 廉保旺, 聂敏. 多跳噪声量子纠缠信道特性及最佳中继协议. 物理学报, 2015, 64(24): 240304. doi: 10.7498/aps.64.240304
    [8] 陈鹏, 蔡有勋, 蔡晓菲, 施丽慧, 余旭涛. 基于纠缠态的量子通信网络的量子信道建立速率模型. 物理学报, 2015, 64(4): 040301. doi: 10.7498/aps.64.040301
    [9] 王律强, 苏桐, 赵宝升, 盛立志, 刘永安, 刘舵. X射线通信系统的误码率分析. 物理学报, 2015, 64(12): 120701. doi: 10.7498/aps.64.120701
    [10] 杜亚男, 解文钟, 金璇, 王金东, 魏正军, 秦晓娟, 赵峰, 张智明. 基于弱相干光源测量设备无关量子密钥分发系统的误码率分析. 物理学报, 2015, 64(11): 110301. doi: 10.7498/aps.64.110301
    [11] 聂敏, 尚鹏钢, 杨光, 张美玲, 裴昌幸. 中尺度沙尘暴对量子卫星通信信道的影响及性能仿真. 物理学报, 2014, 63(24): 240303. doi: 10.7498/aps.63.240303
    [12] 聂敏, 张琳, 刘晓慧. 量子纠缠信令网Poisson生存模型及保真度分析. 物理学报, 2013, 62(23): 230303. doi: 10.7498/aps.62.230303
    [13] 周南润, 曾宾阳, 王立军, 龚黎华. 基于纠缠的选择自动重传量子同步通信协议. 物理学报, 2010, 59(4): 2193-2199. doi: 10.7498/aps.59.2193
    [14] 肖海林, 欧阳缮, 聂在平. MIMO量子信道的空间自由度研究. 物理学报, 2009, 58(6): 3685-3691. doi: 10.7498/aps.58.3685
    [15] 刘玉玲, 满忠晓, 夏云杰. 用非最大纠缠信道对任意二粒子纠缠态的量子秘密分享. 物理学报, 2008, 57(5): 2680-2686. doi: 10.7498/aps.57.2680
    [16] 刘绍鼎, 程木田, 王 霞, 王取泉. 激子自旋弛豫对简并量子点发射光子对纠缠度的影响. 物理学报, 2007, 56(8): 4924-4929. doi: 10.7498/aps.56.4924
    [17] 夏云杰, 王光辉, 杜少将. 双模最小关联混合态作为量子信道实现量子隐形传态的保真度. 物理学报, 2007, 56(8): 4331-4336. doi: 10.7498/aps.56.4331
    [18] 周南润, 曾贵华, 龚黎华, 刘三秋. 基于纠缠的数据链路层量子通信协议. 物理学报, 2007, 56(9): 5066-5070. doi: 10.7498/aps.56.5066
    [19] 石名俊, 杜江峰, 朱栋培. 量子纯态的纠缠度. 物理学报, 2000, 49(5): 825-829. doi: 10.7498/aps.49.825
    [20] 黄虎清, 李飞. 一种计算光孤子通信系统误码率的新方法. 物理学报, 1997, 46(12): 2401-2407. doi: 10.7498/aps.46.2401
计量
  • 文章访问数:  5682
  • PDF下载量:  133
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-11
  • 修回日期:  2018-05-05
  • 刊出日期:  2019-07-20

/

返回文章
返回