搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光场重聚焦成像的散焦机理及聚焦评价函数

刘宾 潘毅华 闫文敏

引用本文:
Citation:

光场重聚焦成像的散焦机理及聚焦评价函数

刘宾, 潘毅华, 闫文敏

Defocusing mechanism and focusing evaluation function of light field imaging

Liu Bin, Pan Yi-Hua, Yan Wen-Min
PDF
HTML
导出引用
  • 光场成像技术可以通过场景的光场信息实现场景全聚焦图像合成和背景目标的去遮挡重聚焦等应用, 其中如何有效评价图像中的聚焦区域是进行上述应用的前提. 但是, 传统成像系统离焦物体的点扩散特性与光场重聚焦图像中离焦特性存在本质差异, 因此基于离焦物点扩散特性的评价标准无法适用光场重聚焦图像的聚焦度评价. 针对上述问题, 本文从光场成像重聚焦的原理出发, 分析离焦目标图像的虚化特征, 设计光场重聚焦图像的聚焦度评价函数, 在此基础上研究了聚焦区域的精细化分割方法. 光场重聚焦实验和去前景遮挡重聚焦实验表明了本文方法在光场重聚焦图像聚焦度评价中的有效性.
    The light field imaging technology can realize the application of the full-focus image synthesis of the scene and the de-occlusion reconstruction of background target through the classification of the light field information of the scene. How to effectively evaluate the focus area in the image is a prerequisite for the above application. The dispersion characteristics of the defocusing point of a conventional imaging system are fundamentally different from those of the defocusing area in the refocusing image of the light field. Therefore, the evaluation criteria based on the diffusion characteristics of the defocusing point cannot be applied to the evaluation of the focus of the refocusing image of the light field. Aiming at the above problems, in this paper, starting from the principle of refocusing of light field imaging, we analyze the blurring characteristics of the defocused target image, and propose a new evaluation function of the focus of the refocusing image of the light field. Based on this, the refinement segmentation method of the focal region is studied to achieve the final focus area extraction. According to the indoor scene data set captured by the camera array of Stanford university, in this paper we use the traditional focus degree evaluation algorithm and the algorithm to evaluate the focusing degree of the foreground target potted plant in the scene and obtain the complete information about the foreground target, therefore we also study the refined segmentation algorithm. Then, in the process of refocusing the background object (CD box), the foreground light is screened out, and the reconstructed image of the specified focusing plane is obtained. Using the peak-signal-to-noise ratio and mean structural similarity index measure to evaluate the quality of the target in refocusing area, the results show that the proposed algorithm in this paper can effectively mark and separate the imaginary artifact information and ensure the high-quality focus reconstruction of the partially occluded target in the scene, which can effectively overcome the influence of the edge and texture information of the object in the scene on the defocusing area. The method presented in this work has better adaptability to the focus degree evaluation of the refocusing image of the light field.
      通信作者: 刘宾, liubin414605032@163.com
    • 基金项目: 瞬态冲击技术重点实验室基金(批准号: 614260603030817)资助的课题
      Corresponding author: Liu Bin, liubin414605032@163.com
    • Funds: Project supported by the Science and Technology on Transient Impact Laboratory, China (Grant No. 614260603030817)
    [1]

    Pei Z, Zhang Y N, Yang T, Zhang X W, Yang Y 2012 Pattern Recog. 45 1637Google Scholar

    [2]

    Pei Z, Zhang Y N, Chen X, Yang Y 2013 Pattern Recog. 46 174Google Scholar

    [3]

    Tao M W, Hadap S, Malik J, Ramamoorthi R 2013 IEEE International Conference on Computer Vision (ICCV) Sydney, December 1–8, 2013 p673

    [4]

    Yang T, Zhang Y N, Tong X M, Ma W G 2013 Int. J. Adv. Robot. Syst. 10 1Google Scholar

    [5]

    Yuan Y, Zhan Q, Huang J Y, Fang J, Xiong C Y 2016 Opt. Lasers. En. 77 85Google Scholar

    [6]

    Li Y, Lin Y 2016 International Congress on Image and Signal Processing BioMedical Engineering and Informatics (CISP-BMEI) Datong, October15–17, 2016 p776

    [7]

    Song K, Liao J B, Dou Y T 2013 Adv. Mater. Res. 753 3051

    [8]

    Zhao H, Fang B, Tang Y Y 2013 IEEE International Conference on Image Processing(ICIP) Melbourne, September 15–18, 2013 p374

    [9]

    Sun Y, Duthaler S, Nelson B J 2004 Microsc. Res. Tech. 65 139Google Scholar

    [10]

    Pertuz S, Puig D, Garcia M A 2013 IEEE Trans. Image Process. 22 1242Google Scholar

    [11]

    Jing T, Li C 2010 IEEE International Conference on Image Processing Hongkong, September 26–29, 2010 p374

    [12]

    Mark A, Michael T, Gabriel T, Tina S 2005 International Conference Image Analysis and Recognition(ICIAR) Toronto, September 28–30, 2005 p174

    [13]

    Tsai D C, Chen H 2012 IEEE Trans. Image Process. 21 459Google Scholar

    [14]

    Muhammad M S, Choi T S 2011 IEEE Trans. Software Eng. 34 564

    [15]

    孙明竹, 赵新, 卢桂章 2009 物理学报 58 6248Google Scholar

    Sun M Z, Zhao X, Lu G Z 2009 Acta Phys. Sin. 58 6248Google Scholar

    [16]

    Yang T, Zhang Y N, Yu J Y, Li J, Ma W G, Tong X M, Yu R, Ran L Y 2014 European Conference on Computer Vision(ECCV) Zurich, September 6–12, 2014 p1

    [17]

    Yang T, Li J, Yu J Y, Zhang Y N, Ma W G, Tong X M, Yu R, Ran L Y 2015 Sensors 15 18965Google Scholar

    [18]

    Kim C, Zimmer H, Pritch Y, Gross M, Sorkine-hornung A 2013 ACM T. Graphic. 32 73

    [19]

    Levoy M, Hanrahan P 1996 Comput. Graph-UK. 8 31

    [20]

    Anat L, Dani L, Yair W 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR) New York, June 17–22, 2006 p61

    [21]

    Zhu J, Zhang D, Lu G 2010 International Conference on Digital Image Computing: Techniques & Applications (DICTA) Sydney, December 1–3, 2010 p629

  • 图 1  光场的双平面表示方法示意图

    Fig. 1.  Schematic diagram of biplane representation of light field.

    图 2  多视点合成孔径成像系统示意图

    Fig. 2.  Schematic diagram of a multiview synthetic aperture imaging system.

    图 3  重聚焦至场景不同深度时离焦目标的虚化特征 (a) 重聚焦至前景(花为聚焦目标物); (b) 重聚焦至后景(画报为聚焦目标物)

    Fig. 3.  The blurring characteristics of defocused target when refocusing to different depth of the scene: (a) Refocus to the foreground (flower is the focus object; (b) refocus to the background (pictorial is the focus object).

    图 4  传统方法与本文方法的聚焦度判别结果对比 (a)传统方法判别标记结果; (b)本文方法的判别标记结果; (c) 传统方法聚焦区域提取结果; (d)本文方法聚焦区域提取结果

    Fig. 4.  The comparison of focusing evaluation between traditional method and our method: (a) Evaluation mark results of traditional methods; (b) evaluation mark results of our method; (c) extraction results of focus areas of traditional methods; (d) extraction results of focus areas of our method.

    图 5  对焦至后景的光场重聚焦图像 (a)参考视点图像; (b)去除前景遮挡物的参考视点图像; (c)对焦至后景的重建图像; (d)去除前景遮挡物的重建图像

    Fig. 5.  The light field refocusing image which focus on the background: (a) Reference viewpoint image; (b) reference viewpoint image which have removed foreground occlusion; (c) reconstructed image focusing on the background; (d) reconstructed image removing foreground occlusion.

    表 1  实验二重聚焦成像结果的质量评价

    Table 1.  Quality evaluation of refocusing imaging results for the second experiment.

    方法左侧CD盒右侧CD盒
    PSNRMSSIMPSNRMSSIM
    直接重聚焦11.93680.275412.65540.3003
    去遮挡重聚焦19.02650.644320.64240.6285
    下载: 导出CSV
  • [1]

    Pei Z, Zhang Y N, Yang T, Zhang X W, Yang Y 2012 Pattern Recog. 45 1637Google Scholar

    [2]

    Pei Z, Zhang Y N, Chen X, Yang Y 2013 Pattern Recog. 46 174Google Scholar

    [3]

    Tao M W, Hadap S, Malik J, Ramamoorthi R 2013 IEEE International Conference on Computer Vision (ICCV) Sydney, December 1–8, 2013 p673

    [4]

    Yang T, Zhang Y N, Tong X M, Ma W G 2013 Int. J. Adv. Robot. Syst. 10 1Google Scholar

    [5]

    Yuan Y, Zhan Q, Huang J Y, Fang J, Xiong C Y 2016 Opt. Lasers. En. 77 85Google Scholar

    [6]

    Li Y, Lin Y 2016 International Congress on Image and Signal Processing BioMedical Engineering and Informatics (CISP-BMEI) Datong, October15–17, 2016 p776

    [7]

    Song K, Liao J B, Dou Y T 2013 Adv. Mater. Res. 753 3051

    [8]

    Zhao H, Fang B, Tang Y Y 2013 IEEE International Conference on Image Processing(ICIP) Melbourne, September 15–18, 2013 p374

    [9]

    Sun Y, Duthaler S, Nelson B J 2004 Microsc. Res. Tech. 65 139Google Scholar

    [10]

    Pertuz S, Puig D, Garcia M A 2013 IEEE Trans. Image Process. 22 1242Google Scholar

    [11]

    Jing T, Li C 2010 IEEE International Conference on Image Processing Hongkong, September 26–29, 2010 p374

    [12]

    Mark A, Michael T, Gabriel T, Tina S 2005 International Conference Image Analysis and Recognition(ICIAR) Toronto, September 28–30, 2005 p174

    [13]

    Tsai D C, Chen H 2012 IEEE Trans. Image Process. 21 459Google Scholar

    [14]

    Muhammad M S, Choi T S 2011 IEEE Trans. Software Eng. 34 564

    [15]

    孙明竹, 赵新, 卢桂章 2009 物理学报 58 6248Google Scholar

    Sun M Z, Zhao X, Lu G Z 2009 Acta Phys. Sin. 58 6248Google Scholar

    [16]

    Yang T, Zhang Y N, Yu J Y, Li J, Ma W G, Tong X M, Yu R, Ran L Y 2014 European Conference on Computer Vision(ECCV) Zurich, September 6–12, 2014 p1

    [17]

    Yang T, Li J, Yu J Y, Zhang Y N, Ma W G, Tong X M, Yu R, Ran L Y 2015 Sensors 15 18965Google Scholar

    [18]

    Kim C, Zimmer H, Pritch Y, Gross M, Sorkine-hornung A 2013 ACM T. Graphic. 32 73

    [19]

    Levoy M, Hanrahan P 1996 Comput. Graph-UK. 8 31

    [20]

    Anat L, Dani L, Yair W 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR) New York, June 17–22, 2006 p61

    [21]

    Zhu J, Zhang D, Lu G 2010 International Conference on Digital Image Computing: Techniques & Applications (DICTA) Sydney, December 1–3, 2010 p629

  • [1] 吴婉玲, 王向珂, 虞华康, 李志远. 基于微纳光纤双模式干涉的亚波长聚焦光场及光捕获应用. 物理学报, 2024, 73(10): 100401. doi: 10.7498/aps.73.20240181
    [2] 段美刚, 赵映, 左浩毅. 基于迭代算法的不同状态散射光场聚焦. 物理学报, 2024, 73(12): 124203. doi: 10.7498/aps.73.20231991
    [3] 蒋驰, 耿滔. 角向偏振涡旋光的紧聚焦特性研究以及超长超分辨光针的实现. 物理学报, 2023, 72(12): 124201. doi: 10.7498/aps.72.20230304
    [4] 李春雷, 徐燕, 郑军, 王小明, 袁瑞旸, 郭永. 磁电势垒结构中光场辅助电子自旋输运特性. 物理学报, 2020, 69(10): 107201. doi: 10.7498/aps.69.20200237
    [5] 夏正德, 宋娜, 刘宾, 潘晋孝, 闫文敏, 邵子惠. 基于字典学习的稠密光场重建算法. 物理学报, 2020, 69(6): 064201. doi: 10.7498/aps.69.20191621
    [6] 秦飞, 洪明辉, 曹耀宇, 李向平. 平面超透镜的远场超衍射极限聚焦和成像研究进展. 物理学报, 2017, 66(14): 144206. doi: 10.7498/aps.66.144206
    [7] 蒋忠君, 刘建军. 超振荡及其远场聚焦成像研究进展. 物理学报, 2016, 65(23): 234203. doi: 10.7498/aps.65.234203
    [8] 唐茜, 赵葆常, 邱跃洪, 张淳民, 穆廷魁. 基于光瞳分割和角剪切的成像偏振光谱技术. 物理学报, 2012, 61(23): 230701. doi: 10.7498/aps.61.230701
    [9] 杨 浩, 冯国英, 朱启华, 张大勇, 周寿桓. 聚焦光场俘获微球的FDTD分析. 物理学报, 2008, 57(9): 5506-5512. doi: 10.7498/aps.57.5506
    [10] 刘运全, 张 杰, 武慧春, 盛政明. 超短电子脉冲在聚焦强激光场中的三维有质动力散射. 物理学报, 2006, 55(3): 1176-1180. doi: 10.7498/aps.55.1176
    [11] 易煦农, 胡 巍, 罗海陆, 朱 静. 用高阶对比度研究光束的小尺度自聚焦. 物理学报, 2005, 54(2): 749-754. doi: 10.7498/aps.54.749
    [12] 陈 敏, 肖体乔, 骆玉宇, 刘丽想, 魏 逊, 杜国浩, 徐洪杰. 微聚焦管硬x射线位相衬度成像. 物理学报, 2004, 53(9): 2953-2957. doi: 10.7498/aps.53.2953
    [13] 彭志涛, 景峰, 刘兰琴, 朱启华, 陈波, 张昆, 刘华, 张清泉, 程晓峰, 蒋东镔, 刘红婕, 彭翰生. 自聚焦激光束光束质量评价的功率谱密度方法. 物理学报, 2003, 52(1): 87-90. doi: 10.7498/aps.52.87
    [14] 梁艳梅, 翟宏琛, 常胜江, 张思远. 基于最大隶属度原则的彩色图像分割方法. 物理学报, 2003, 52(11): 2655-2659. doi: 10.7498/aps.52.2655
    [15] 汪仲清. 奇偶q-变形相干态的高阶压缩效应. 物理学报, 2001, 50(4): 690-692. doi: 10.7498/aps.50.690
    [16] 佘卫龙, 何穗荣, 汪河洲, 余振新, 莫党. 热自聚焦诱导光折变非对称自散焦. 物理学报, 1996, 45(12): 2022-2026. doi: 10.7498/aps.45.2022
    [17] 马锦秀, 徐至展. 共振自聚焦理论. 物理学报, 1987, 36(1): 1-9. doi: 10.7498/aps.36.1
    [18] 郭常霖. X射线单色四重聚焦照相机单色器的衍射几何. 物理学报, 1980, 29(9): 1217-1221. doi: 10.7498/aps.29.1217
    [19] 马兴孝, 胡照林. 红外聚焦脉冲激光场中同位素浓缩过程的动力学处理. 物理学报, 1978, 27(6): 645-650. doi: 10.7498/aps.27.645
    [20] 何国柱. 周期场聚焦电子束. 物理学报, 1958, 14(5): 376-392. doi: 10.7498/aps.14.376
计量
  • 文章访问数:  9129
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-13
  • 修回日期:  2019-07-08
  • 上网日期:  2019-10-01
  • 刊出日期:  2019-10-20

/

返回文章
返回