搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

人脑默认模式网络的动力学行为

姚楠 苏春旺 李尤君 王珏 周昌松 黄子罡

引用本文:
Citation:

人脑默认模式网络的动力学行为

姚楠, 苏春旺, 李尤君, 王珏, 周昌松, 黄子罡

Dynamics of the default mode network in human brain

Yao Nan, Su Chun-Wang, Li You-Jun, Wang Jue, Zhou Chang-Song, Huang Zi-Gang
PDF
HTML
导出引用
  • 大脑具有自适应、自组织、多稳态等重要特征, 是典型的复杂系统. 人脑在静息态下的关键功能子网络——默认模式网络(DMN)的激活处于多状态间持续跳转的非平衡过程, 揭示该过程背后的动力学机制具有重要的科学意义和临床应用前景. 本文基于功能磁共振获得的血氧水平依赖(BOLD)信号, 建立了DMN吸引子跳转非平衡过程的能量图景、吸引子非联通图、跳转关系网络等; 以高级视觉皮层和听觉等皮层活动为例, 通过对应激活DMN状态空间的分布, 以及XGBoost、深度神经网络等算法验证了DMN状态变化与外部脑区状态的密切依赖关系; 通过偏相关、收敛交叉映射等方法分析了DMN内各个脑区之间的相互作用. 本文结果有助于理解静息态下大脑内在非平衡过程的动力学机制, 以及从动力学的角度探索具有临床意义的脑功能障碍生物标志物.
    Brain is a typical complex system with characteristics such as self-adaptation, self-organization, and multistability. The activity of the default mode network (DMN), a crucial functional subnetwork of the human brain in resting state, obeys typical non-equilibrium statistical mechanical processes in which the system continually switches among multiple metastable states. Revealing the underlying dynamical mechanism of these processes has important scientific significance and clinical application prospects. In this paper, according to the blood oxygen level dependent (BOLD) signals obtained from functional magnetic resonance imaging (fMRI), we build an energy landscape, disconnectivity graph and transition network to explore the non-equilibrium processes of DMN switching among different attractors in resting state. Taking the activities of high-level visual and auditory cortices for examples, we verify the intimate relationship between the dynamics of DMN and the activity modes of these external brain regions, through comparing the distributions in state space and the algorithms such as XGBoost and deep neural networks. In addition, we analyze the interaction between various DMN regions in the resting state by using the techniques such as compressive-sensing-based partial correlation and convergence cross mapping. The results in this paper may presnt new insights into revealing the dynamics of the intrinsic non-equilibrium processes of brain in resting state, and putting forward clinically significant biomarkers for brain dysfunction from the viewpoint of dynamics.
      通信作者: 李尤君, liyoujun1@xjtu.edu.cn ; 黄子罡, huangzg@xjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11975178, 11647052)、认知神经科学与学习国家重点实验室(批准号: CNLYB1802)、陕西省自然科学基础研究计划(批准号: 2018JQ1010, 2020JM-058, 2020JQ-096)、陕西省教育厅科研计划(批准号: 17JK0553)和陕西省高校科协青年人才托举计划(批准号: 20170606)资助的课题
      Corresponding author: Li You-Jun, liyoujun1@xjtu.edu.cn ; Huang Zi-Gang, huangzg@xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Nos. 11975178, 11647052), the Open Project of State Key Laboratory of Cognitive Neuroscience and Learning, China (Grant No. CNLYB1802), the Natural Science Basic Research Plan of Shaanxi Province, China (Grant Nos. 2018JQ1010, 2020JM-058, 2020JQ-096), the Scientific Research Program Funded by Shaanxi Provincial Education Department, China (Grant No. 17JK0553), and the Young Talent Fund of University Association for Science and Technology of Shaanxi Province, China (Grant No. 20170606)
    [1]

    Sarraf S, Sun J 2016 arXiv: 1602.02225 [physics.med-ph]

    [2]

    Liu C, Zhou C, Wang J, Loparo K 2018 IEEE Trans. Neural Syst. Rehabil. Eng. 26 1649Google Scholar

    [3]

    Lei Y, Song B, Chen L, Su J, Zhang X, Ni W, Yu Y, Xu B, Yu L, Gu Y, Mao Y 2018 Brain Imaging Behav. 11682Google Scholar

    [4]

    Chen J E, Glover G H, Greicius M D, Chang C 2017 Hum. Brain. Mapp. 38 2454Google Scholar

    [5]

    Chen B, Li X 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC) Banff, Canada, October 1–4, 2017 p2820

    [6]

    Roberto T, Fox P Tomás P J 2008 Cereb. Cortex 18 2553Google Scholar

    [7]

    Raichle M E, Macleod A M, Snyder A Z, Powers W J, Gusnard D A, d Shulman G L 2001 Proc. Natl. Acad. Sci. U.S.A. 98 676Google Scholar

    [8]

    Greicius M D, Ben K, Reiss A L, Vinod M 2003 Proc. Natl. Acad. Sci. U.S.A. 100 253Google Scholar

    [9]

    Greicius M D, Kaustubh S, Vinod M, Dougherty R F 2009 Cereb. Cortex 19 72Google Scholar

    [10]

    Lin P, Yang Y, Jovicich J, Pisapia N D, Wang X, Zuo C S, Levitt J J 2016 Brain Imaging Behav. 10 212Google Scholar

    [11]

    Gusnard D A, Raichle M E 2001 Nat. Rev. Neurosci. 2 685Google Scholar

    [12]

    Li Y, Yao H, Lin P, Zheng L, Li C, Zhou B, Wang P, Zhang Z, Wang L, An N 2017 Front. Ag. Neurosci. 9 259Google Scholar

    [13]

    Anticevic A, Cole M W, Murray J D, Corlett P R, Wang X J, Krystal J H 2012 Trends Cogn. Sci. 16 584Google Scholar

    [14]

    Wang J, Wang Y, Wu X, Huang H, Jia Y, Zhong S, Wu X, Zhao L, He Y, Huang L, Huang R 2020 Brain Imaging Behav. 14 186Google Scholar

    [15]

    Zhao Q, Swati Z N, Metmer H, Sang X, Lu J 2019 Neurosci. Lett. 701 154Google Scholar

    [16]

    Greicius M D, Srivastava G, Reiss A L, Menon V 2004 Proc. Natl. Acad. Sci. U.S.A. 101 4637Google Scholar

    [17]

    Fassbender C, Zhang H, Buzy W M, Cortes C R, Mizuiri D, Beckett L, Schweitzer J B 2009 Brain Res. 1273 114Google Scholar

    [18]

    Uddin L Q, Kelly A M, Biswal B B, Margulies D S, Shehzad Z, Shaw D, Ghaffari M, Rotrosen J, Adler L A, Castellanos F X, Milhama M P 2008 J. Neurosci. Methods 169 249Google Scholar

    [19]

    Manoliu A, Riedl V, Zherdin A, Mühlau M, Schwerthöffer D, Scherr M, Peters H, Zimmer C, Förstl H, Bäuml J, Wohlschläger A M, Sorg C 2014 Schizophrenia Bull. 40 428Google Scholar

    [20]

    Supekar K, Cai W, Krishnadas R, Palaniyappan L, Menon V 2019 Biol. Psychiatry 85 60Google Scholar

    [21]

    Bonnelle V, Ham T E, Leech R, Kinnunen K M, Mehta M A, Greenwood R J, Sharp D J 2012 Proc. Natl. Acad. Sci. U.S.A. 109 4690Google Scholar

    [22]

    Cui Y, Yu S, Zhang T, Zhang Y, Xia Y, Yao D, Guo D 2018 Brain Res. 1696 71Google Scholar

    [23]

    Wang S J, Ouyang G, Guang J, Zhang M, Wong K M, Zhou C 2016 Phys. Rev. Lett. 116 018101Google Scholar

    [24]

    Guo D, Guo F, Zhang Y, Li F, Xia Y, Xu P, Yao D 2018 Front. Comput. Neurosci. 12 21Google Scholar

    [25]

    Watanabe T, Rees G 2017 Nat. Commun. 8 1Google Scholar

    [26]

    Ashourvan A, Gu S, Mattar M G, Vettel J M, Bassett D S 2017 Neuroimage 157 364Google Scholar

    [27]

    Lee H, Lee D S, Kang H, Kim B N, Chung M K 2011 IEEE Trans. Med. Imaging 30 1154Google Scholar

    [28]

    Sugihara G, May R, Ye H, Hsieh C H, Deyle E, Fogarty M, Munch S 2012 Science 338 496Google Scholar

    [29]

    Finn E S, Shen X, Scheinost D, Rosenberg M D, Huang J, Chun M M, Papademetris X, Constable R T 2015 Nat. Neurosci. 18 1664Google Scholar

    [30]

    Qian J, Diez I, Ortiz-Terán L, Bonadio C, Liddell T, Goñi J, Sepulcre J 2018 Front. Neurosci. 12 38Google Scholar

  • 图 1  大脑默认模式网络(DMN)[12]

    Fig. 1.  DMNof the brain[12].

    图 2  DMN能量图景构造方法示意图

    Fig. 2.  Schematic diagram of the construction of DMN energy landscape.

    图 3  默认模式网络(DMN)激活行为的动力学特征 (a) dDMN状态能量图景中吸引子状态的非联通图(disconnectivity graph); (b)根据吸引子吸引域标签进行着色的DMN状态轨迹在3维空间的投影, 左右两图显示了同一被试轨迹不同角度的观察; (c)吸引子间跳转网络, 节点大小表示对应吸引域的访问次数, 点间有向边的权重表示对应的单向跳转频次, 总时长T = 1200. (a)−(c)中上下两行分别对应于被试1和被试2的结果; (d)−(i)为55个被试能量图景的统计分布特征: (d)吸引子数目的统计分布; (e)吸引域占据率(访问次数)的统计分布; (f)能量壁垒(势阱深度)的统计分布; (g)吸引域占据率与能量壁垒的关系; (h) 吸引域占据率与吸引域面积的关系; (i) 能量壁垒和吸引域面积的关系

    Fig. 3.  Dynamic characteristics of the resting state default mode network (DMN): (a) Disconnectivity graph of the energy landscape for the dDMN; (b) projections of the DMN state trajectories, colored according to the labels of attraction basins, in a 3-dimensional space. The left and right panels show the trajectory of the same subject from different viewing angles, respectively; (c) attractors transition networks. The nodal size indicates the visiting frequency in the corresponding attracting domain, and the weight of directed edge indicates the corresponding directed switching frequency, with the recording time T = 1200. The upper and lower rows in the panels (a)−(c) correspond to the results of test subjects 1 and 2, respectively. Panels (d)−(i) are the statistical results of energy landscapes for 55 subjects: (d) The distribution of attractor numbers; (e) the distribution of basin occupations; (f) the distribution of energy barriers; (g) dependence of basin occupation and energy barrier; (h) dependence of basin occupation and area; (i) dependence of energy barrier and area.

    图 4  默认模式网络(DMN)状态与其他脑区激活行为的共变 (a)对高级视觉皮层(hV)和听觉皮层(Aud)活动二值化, 得到4种激活状态的(hV, Aud)标签序列; (b)根据(hV, Aud)标签序列着色的DMN状态轨道; (c) DMN的23个脑区激活行为在PCA1-PAC2空间的投影; (d)对DMN的激活行为数据按照同时刻(hV, Aud)标签进行4分类训练所得ROC曲线, 其中包括XGBoost, DNN, Random Forest三种方法及两种训练方式

    Fig. 4.  Covariation of the default mode network (DMN) states with activity mode in other brain regions: (a) Binarizing the activities of high-level visual cortex (hV) and auditory cortex (Aud) to obtain (hV, Aud) label sequence; (b) DMN state orbit colored according to (hV, Aud) label sequence; (c) projection of the activity states of the 23 brain regions in the PCA1-PAC2 space; (d) the ROC curve obtained by performing 4-classes training on the (hV, Aud) labels of DMN activity data by XGBoost, DNN, Random Forest with two training schemes.

    图 5  DMN状态与视听觉皮层状态的对应现象 (a), (b)根据吸引子的吸引域标签着色的DMN状态轨道; (c), (d) 根据(hV, Aud)标签序列着色的DMN状态轨道; (a), (c)被试1的结果; (b)(d)被试2的结果

    Fig. 5.  Correspondence between the states of DMN and (visual, auditory) cortexes: (a), (b) DMN state orbits colored according to the labels of attraction basin; (c), (d) DMN state orbits colored according to the labels of (hV, Aud) states. (a), (c) the results of subject 1; (b)(d) the results of subject 2.

    图 6  DMN内部23个ROI间关系分析 (a), (b)基于压缩感知的偏相关矩阵及网络结构, 网络中紫色线表示正相关, 青色线表示负相关, 线的粗细表示相关性强弱; (c) CCM方法中得到的ROI之间的单向影响程度${\rho _{i|{M_j}}}$, 延迟坐标嵌入维数为2, 延迟为1, 下同; (d) CCM方法得到的ROI间动力学因果性矩阵; (e)对应的ROI间动力学影响的粗粒化结果

    Fig. 6.  Relationships of the 23 ROIs within DMN: (a) Partial correlation matrix calculated based on compressive sensing; (b) the corresponding network structure, which includes the positive (magenta links) and negative (cyan links) correlations. The width of the line indicates the correlation strength; (c) the directed dynamical influence from ROI i to j, ${\rho _{i|{M_j}}}$, obtained in the CCM method. The delay coordinate embedding dimension is 2 and the delay is 1; (d) the causality matrix obtained by CCM; (e) the coarse-grained result of the corresponding influence among ROIs within DMN.

    表 1  默认模式网络ROI的名称、标签、Brodmann分区(BA)编号及位置坐标信息

    Table 1.  Name, label, Brodmann area (BA) number, and location information of ROIs belonging to the default mode network

    ROILabelL/RBAXYZ
    Posterior CingulatevDMN_1L31–12–6210
    Middle Frontal GyrusvDMN_2L10–27–659
    CulmenvDMN_3L37–30–39–20
    Superior Occipital GyrusvDMN_4L19–36–8828
    Posterior Cingulate GyrusvDMN_5R3115–5613
    PrecuneusvDMN_67–6–6156
    Middle Frontal GyrusvDMN_7R10242647
    CulmenvDMN_8R3727–33–23
    Angular GyrusvDMN_9R3943–7928
    CerebellumvDMN_10R12–47–63
    Ventral Posterior Cingulate GyruspDMN_1230–3528
    PrecuneuspDMN_270–7638
    Inferior Parietal LobulepDMN_3L40–39–6446
    Inferior Parietal LobulepDMN_4R4039–6446
    Middle Frontal GyrusdDMN_1904912
    Angular GyrusdDMN_2L39–48–7332
    Superior Frontal GyrusdDMN_3R6183851
    Dorsal Posterior Cingulate GyrusdDMN_4310–5730
    Ventral Anterior Cingulate GyrusdDMN_5240–1735
    Angular GyrusdDMN_6R3948–6629
    ThalamusdDMN_7–6–63
    Parahippocampal GyrusdDMN_8L36–24–37–9
    Parahippocampal GyrusdDMN_9R3624–21–23
    下载: 导出CSV
  • [1]

    Sarraf S, Sun J 2016 arXiv: 1602.02225 [physics.med-ph]

    [2]

    Liu C, Zhou C, Wang J, Loparo K 2018 IEEE Trans. Neural Syst. Rehabil. Eng. 26 1649Google Scholar

    [3]

    Lei Y, Song B, Chen L, Su J, Zhang X, Ni W, Yu Y, Xu B, Yu L, Gu Y, Mao Y 2018 Brain Imaging Behav. 11682Google Scholar

    [4]

    Chen J E, Glover G H, Greicius M D, Chang C 2017 Hum. Brain. Mapp. 38 2454Google Scholar

    [5]

    Chen B, Li X 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC) Banff, Canada, October 1–4, 2017 p2820

    [6]

    Roberto T, Fox P Tomás P J 2008 Cereb. Cortex 18 2553Google Scholar

    [7]

    Raichle M E, Macleod A M, Snyder A Z, Powers W J, Gusnard D A, d Shulman G L 2001 Proc. Natl. Acad. Sci. U.S.A. 98 676Google Scholar

    [8]

    Greicius M D, Ben K, Reiss A L, Vinod M 2003 Proc. Natl. Acad. Sci. U.S.A. 100 253Google Scholar

    [9]

    Greicius M D, Kaustubh S, Vinod M, Dougherty R F 2009 Cereb. Cortex 19 72Google Scholar

    [10]

    Lin P, Yang Y, Jovicich J, Pisapia N D, Wang X, Zuo C S, Levitt J J 2016 Brain Imaging Behav. 10 212Google Scholar

    [11]

    Gusnard D A, Raichle M E 2001 Nat. Rev. Neurosci. 2 685Google Scholar

    [12]

    Li Y, Yao H, Lin P, Zheng L, Li C, Zhou B, Wang P, Zhang Z, Wang L, An N 2017 Front. Ag. Neurosci. 9 259Google Scholar

    [13]

    Anticevic A, Cole M W, Murray J D, Corlett P R, Wang X J, Krystal J H 2012 Trends Cogn. Sci. 16 584Google Scholar

    [14]

    Wang J, Wang Y, Wu X, Huang H, Jia Y, Zhong S, Wu X, Zhao L, He Y, Huang L, Huang R 2020 Brain Imaging Behav. 14 186Google Scholar

    [15]

    Zhao Q, Swati Z N, Metmer H, Sang X, Lu J 2019 Neurosci. Lett. 701 154Google Scholar

    [16]

    Greicius M D, Srivastava G, Reiss A L, Menon V 2004 Proc. Natl. Acad. Sci. U.S.A. 101 4637Google Scholar

    [17]

    Fassbender C, Zhang H, Buzy W M, Cortes C R, Mizuiri D, Beckett L, Schweitzer J B 2009 Brain Res. 1273 114Google Scholar

    [18]

    Uddin L Q, Kelly A M, Biswal B B, Margulies D S, Shehzad Z, Shaw D, Ghaffari M, Rotrosen J, Adler L A, Castellanos F X, Milhama M P 2008 J. Neurosci. Methods 169 249Google Scholar

    [19]

    Manoliu A, Riedl V, Zherdin A, Mühlau M, Schwerthöffer D, Scherr M, Peters H, Zimmer C, Förstl H, Bäuml J, Wohlschläger A M, Sorg C 2014 Schizophrenia Bull. 40 428Google Scholar

    [20]

    Supekar K, Cai W, Krishnadas R, Palaniyappan L, Menon V 2019 Biol. Psychiatry 85 60Google Scholar

    [21]

    Bonnelle V, Ham T E, Leech R, Kinnunen K M, Mehta M A, Greenwood R J, Sharp D J 2012 Proc. Natl. Acad. Sci. U.S.A. 109 4690Google Scholar

    [22]

    Cui Y, Yu S, Zhang T, Zhang Y, Xia Y, Yao D, Guo D 2018 Brain Res. 1696 71Google Scholar

    [23]

    Wang S J, Ouyang G, Guang J, Zhang M, Wong K M, Zhou C 2016 Phys. Rev. Lett. 116 018101Google Scholar

    [24]

    Guo D, Guo F, Zhang Y, Li F, Xia Y, Xu P, Yao D 2018 Front. Comput. Neurosci. 12 21Google Scholar

    [25]

    Watanabe T, Rees G 2017 Nat. Commun. 8 1Google Scholar

    [26]

    Ashourvan A, Gu S, Mattar M G, Vettel J M, Bassett D S 2017 Neuroimage 157 364Google Scholar

    [27]

    Lee H, Lee D S, Kang H, Kim B N, Chung M K 2011 IEEE Trans. Med. Imaging 30 1154Google Scholar

    [28]

    Sugihara G, May R, Ye H, Hsieh C H, Deyle E, Fogarty M, Munch S 2012 Science 338 496Google Scholar

    [29]

    Finn E S, Shen X, Scheinost D, Rosenberg M D, Huang J, Chun M M, Papademetris X, Constable R T 2015 Nat. Neurosci. 18 1664Google Scholar

    [30]

    Qian J, Diez I, Ortiz-Terán L, Bonadio C, Liddell T, Goñi J, Sepulcre J 2018 Front. Neurosci. 12 38Google Scholar

  • [1] 周瑶瑶, 刘艳红, 闫智辉, 贾晓军. 多功能量子远程传态网络. 物理学报, 2021, 70(10): 104203. doi: 10.7498/aps.70.20201749
    [2] 邱路, 黄国妍. 基于时变状态网络的银行风险传导研究. 物理学报, 2020, 69(13): 138901. doi: 10.7498/aps.69.20200221
    [3] 张夫一, 葛曼玲, 郭志彤, 谢冲, 杨泽坤, 宋子博. 静息态功能磁共振成像评估健康老年人认知行为 的多尺度熵模型研究. 物理学报, 2020, (): 008700. doi: 10.7498/aps.69.20200051
    [4] 张夫一, 葛曼玲, 郭志彤, 谢冲, 杨泽坤, 宋子博. 静息态功能磁共振成像评估健康老年人认知行为的多尺度熵模型研究. 物理学报, 2020, 69(10): 108703. doi: 10.7498/aps.69.20200050
    [5] 高彦丽, 陈世明. 一种全局同质化相依网络耦合模式. 物理学报, 2016, 65(14): 148901. doi: 10.7498/aps.65.148901
    [6] 杨先霞, 濮存来, 许忠奇, 陈荣斌, 吴洁鑫, 李伦波. 无标度网络中基于能量的混合路由策略. 物理学报, 2016, 65(24): 248901. doi: 10.7498/aps.65.248901
    [7] 郭苗苗, 王昱婧, 徐桂芝, Griffin Milsap, Nitish V. Thakor, Nathan Crone. 时变动态贝叶斯网络模型及其在皮层脑电网络连接中的应用. 物理学报, 2016, 65(3): 038702. doi: 10.7498/aps.65.038702
    [8] 杨孝敬, 杨阳, 李淮周, 钟宁. 基于模糊近似熵的抑郁症患者静息态功能磁共振成像信号复杂度分析. 物理学报, 2016, 65(21): 218701. doi: 10.7498/aps.65.218701
    [9] 杨剑, 陈书燊, 皇甫浩然, 梁佩鹏, 钟宁. 静息态脑电信号动态功能连接分析. 物理学报, 2015, 64(5): 058701. doi: 10.7498/aps.64.058701
    [10] 侯凤贞, 戴加飞, 刘新峰, 黄晓林. 基于网络连接度指标的脑梗死患者脑电信号相同步分析. 物理学报, 2014, 63(4): 040506. doi: 10.7498/aps.63.040506
    [11] 董泽芹, 侯凤贞, 戴加飞, 刘新峰, 李锦, 王俊. 基于Kendall改进的同步算法癫痫脑网络分析. 物理学报, 2014, 63(20): 208705. doi: 10.7498/aps.63.208705
    [12] 尹宁, 徐桂芝, 周茜. 磁刺激穴位复杂脑功能网络构建与分析. 物理学报, 2013, 62(11): 118704. doi: 10.7498/aps.62.118704
    [13] 宋彤, 李菡. 基于小波回声状态网络的混沌时间序列预测. 物理学报, 2012, 61(8): 080506. doi: 10.7498/aps.61.080506
    [14] 周漩, 张凤鸣, 周卫平, 邹伟, 杨帆. 利用节点效率评估复杂网络功能鲁棒性. 物理学报, 2012, 61(19): 190201. doi: 10.7498/aps.61.190201
    [15] 李德才, 韩敏. 基于鲁棒回声状态网络的混沌时间序列预测研究. 物理学报, 2011, 60(10): 108903. doi: 10.7498/aps.60.108903
    [16] 陈章耀, 张晓芳, 毕勤胜. 广义Chua电路簇发现象及其分岔机理. 物理学报, 2010, 59(4): 2326-2333. doi: 10.7498/aps.59.2326
    [17] 宋青松, 冯祖仁, 李人厚. 用于混沌时间序列预测的多簇回响状态网络. 物理学报, 2009, 58(7): 5057-5064. doi: 10.7498/aps.58.5057
    [18] 方小玲, 姜宗来. 基于脑电图的大脑功能性网络分析. 物理学报, 2007, 56(12): 7330-7338. doi: 10.7498/aps.56.7330
    [19] 李芳昱, 石东平, 代洪霞. 静磁场中双极化态弱平面引力波对高斯束的扰动能量. 物理学报, 2003, 52(11): 2706-2711. doi: 10.7498/aps.52.2706
    [20] 常胜江, 刘, 张文伟, 申金媛, 翟宏琛, 张延. 适用于神经元状态非等概率分布的神经网络模型及其光学实现. 物理学报, 1998, 47(7): 1101-1109. doi: 10.7498/aps.47.1101
计量
  • 文章访问数:  13572
  • PDF下载量:  336
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-02
  • 修回日期:  2020-03-22
  • 刊出日期:  2020-04-20

/

返回文章
返回