搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mn掺杂Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3单晶微米尺度压电阵列的制备与铁电畴结构研究

王巨杉 马金鹏 赵祥永 陈明珠 王飞飞 王涛 唐艳学 程玮 林迪 罗豪甦

引用本文:
Citation:

Mn掺杂Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3单晶微米尺度压电阵列的制备与铁电畴结构研究

王巨杉, 马金鹏, 赵祥永, 陈明珠, 王飞飞, 王涛, 唐艳学, 程玮, 林迪, 罗豪甦

Preparation and ferroelectric domain structure of micro-scale piezoelectric array fabricated by Mn doped Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystal

Wang Ju-Shan, Ma Jin-Peng, Zhao Xiang-Yong, Chen Ming-Zhu, Wang Fei-Fei, Wang Tao, Tang Yan-Xue, Cheng Wei, Lin Di, Luo Hao-Su
PDF
HTML
导出引用
  • 超声探头是高端医学超声诊疗设备的核心元件, 由弛豫型铁电单晶制备的新型压电器件可显著提高其性能. 由于高阵元密度阵列技术与微机电系统迅速发展, 传统切割填充法刀缝过宽, 难以降低阵元尺寸, 无法提高阵元密度, 更不利于高分辨率及高频率的应用需求. 采用紫外光刻-深反应离子刻蚀工艺的微机械制备方法, 可以降低缝宽、提升阵列密度. 制备了基于新型、高性能弛豫铁电单晶—Mn离子掺杂0.3Pb(In1/2Nb1/2)O3-0.4Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (Mn-PIMNT)的微米尺度压电阵列. 研究了紫外光刻工艺参数、深反应离子刻蚀工艺参数对压电阵列形貌的影响规律, 得到了不同沟道深度与不同压电阵元形状的形成机制以及Mn-PIMNT单晶的刻蚀速率与天线功率、偏置功率及刻蚀气体比例之间的关系规律. 得到压电阵列阵元尺寸小于10 μm, 沟槽深度大于20 μm, 沟槽宽度小于5 μm, 侧壁角度高于87°. 通过压电力显微镜研究了微米尺度压电阵元的铁电畴结构及电场效应调控. 与传统切割填充法相比, 本文的加工方法不存在刀缝过宽, 可确保单晶晶向, 促进了高频率压电单晶复合材料、高密度超声换能器阵列以及新型压电微机械系统的发展.
    Relaxor ferroelectric single crystal piezoelectric materials have become the core components of new piezoelectric devices such as ultrasonic transducers used in high-end medical ultrasound diagnostic and therapeutic equipment. High-element density array technology and micro-electro-mechanical systems have developed rapidly. For the new generation of 20–80 MHz medical high-frequency ultrasound transducers, the thickness of high-frequency piezoelectric composite material is usually 20–60 μm, and the width of each piezoelectric column is about 5–15 μm. However, the kerf of traditional cutting-and-filling method is too wide, and it is difficult to reduce the size of the array element, which is not conducive to the density of the array element and the demand for higher frequency applications with higher resolution. In this work, a micromechanical fabrication method based on deep reactive ion etching is used to reduce the slit width and increase the array density. We study the fabrication technology of novel and high-performance relaxor ferroelectric single crystal Mn doped Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (Mn-PIMNT) micro scale piezoelectric array. The influence of the parameters of lithography and deep reactive ion etching on the morphology of piezoelectric array are studied. We obtain the formation mechanisms of different kerfs, different shapes of piezoelectric array element and the relationship among etching rate of Mn-PIMNT single crystal with antenna power, bias power and etching gas ratio. Finally, the size of piezoelectric array element is less than 10 μm, the etching depth is more than 20 μm, the kerf width is less than 5 μm, the angle is controllable, and the maximum is more than 87°. The ferroelectric domain structure and the regulation of electric field effect of micro scale piezoelectric elements are studied by means of piezoelectric force microscope. The variation rules of piezoelectric properties and micro scale are obtained. This method can effectively bypass the shortcomings of the wide kerf and the destruction of the crystal orientation by the traditional cutting-and-filling method. It provides a new preparation technology for the development of high-frequency piezoelectric composites, high-density ultrasonic transducer arrays and new piezoelectric micro mechanical systems. This project presents the guidance and reference for the new micromachining technology of ferroelectric materials, and also lays the foundation for the high-frequency piezoelectric composite and high-frequency ultrasonic transducer.
      通信作者: 赵祥永, xyzhao@shnu.edu.cn ; 程玮, chengwei@shnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51772192, 11574214)和上海市科学技术委员会(批准号: 17070502700, 19070502800)资助的课题
      Corresponding author: Zhao Xiang-Yong, xyzhao@shnu.edu.cn ; Cheng Wei, chengwei@shnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51772192, 11574214) and the Shanghai Committee of Science and Technology, China (Grant Nos. 17070502700, 19070502800)
    [1]

    Wang D W, Cao M S, Zhang S J 2012 J. Am. Ceram. Soc. 95 3220Google Scholar

    [2]

    Wang D W, Cao M S, Zhang S J 2012 Phys. Status Solidi RRL 6 135Google Scholar

    [3]

    Wang D W, Cao M S, Zhao Q L, Cui Y, Zhang S J 2013 Phys. Status Solidi RRL 7 221Google Scholar

    [4]

    Lee J S, Park E C, Lee S H, Lee D S 2005 Mater. Chem. Phys. 90 381Google Scholar

    [5]

    罗豪甦, 沈关顺, 齐振一, 许桂生, 王评初, 乐秀宏, 李金龙, 仲维卓, 殷之文 1997 人工晶体学报 26 191

    Luo H S, Shen G S, Qi Z Y, Xu G S, Wang P C, Le X H, Li J L, Zhong W Z, Yin Z W 1997 J. Synthetic Crystals 26 191

    [6]

    Luo H S, Xu G S, Wang P C, Yin Z W 1999 Ferroelectrics 231 97Google Scholar

    [7]

    Xu G S, Luo H S, Xu H Q, Qi Z Y, Wang P C, Zhong W Z, Yin Z W 2001 J. Cryst. Growth. 222 202Google Scholar

    [8]

    Feng Z Y, He T H, Xu H Q, Luo H S, Yin Z W 2004 Solid. State. Commun. 130 557Google Scholar

    [9]

    Wu X, Liu L H, Li X B, Zhang Q H, Ren B, Lin D, Zhao X Y, Luo H S, Huang Y L 2011 J. Cryst. Growth. 318 865Google Scholar

    [10]

    Deng C G, He C J, Chen Z Y, Chen H B, Mao R, Liu Y W, Zhu K J, Gao H F, Ding Y 2019 J. Appl. Phys. 126 085702Google Scholar

    [11]

    He C J, Chen Z Y, Chen H B, Wu T, Wang J M, Gu X R, Liu Y W, Zhu K J 2018 J. Nanophotonics 12 046019Google Scholar

    [12]

    He C J, Chen H B, Bai F, Fan Z B, Sun L, Xu F, Wang J M, Liu Y W, Zhu K J 2012 J. Appl. Phys. 112 126102Google Scholar

    [13]

    Jia Y M, Luo H S, Zhao X Y, Wang F F 2008 Adv. Mater. 20 4776Google Scholar

    [14]

    He C J, Chen H B, Wang J M, Gu X R, Wu T, Liu Y W 2015 J. Appl. Phys. 117 164104Google Scholar

    [15]

    Yang Y, Jung J H, Yun B K, Zhang F, Pradel K C, Guo W, Wang Z L 2012 Adv. Mater. 24 5357Google Scholar

    [16]

    岳晴雯 2016 博士学位论文 (上海: 中国科学院大学)

    Yue Q W 2016 Ph. D. Dissertation (Shanghai: University of Chinese Academy of Sciences) (in Chinese)

    [17]

    Sun E W, Cao W W 2014 Prog. Mater. Sci. 65 124Google Scholar

    [18]

    Zhu R F, Zhao J, Liu F, Zhang Z, Fang B J, Chen J W, Xu H Q, Wang X A, Luo H S 2020 J. Am. Ceram. Soc. 103 2575Google Scholar

    [19]

    Xie Q X, Hu Y Q, Xue S D, Ma J P, Zhao X Y, Tang Y X, Wang F F, Chew K H, Lin D, Luo H S 2019 Mater. Chem. Phys. 238 121890Google Scholar

    [20]

    Zhang J S, Ren W, Jing X P, Shi P, Wu X Q 2015 Ceram. Int. 41 S656Google Scholar

    [21]

    Jian X H, Li S B, Huang W B, Cui Y Y, Jiang X N 2015 J. Intell. Mater. Syst. Struct. 26 2011Google Scholar

    [22]

    周丹, 罗来慧, 王飞飞, 贾艳敏, 赵祥永, 罗豪甦 2008 物理学报 57 4552Google Scholar

    Zhou D, Luo L H, Wang F F, Jia Y M, Zhao X Y, Luo H S 2008 Acta Phys. Sin. 57 4552Google Scholar

    [23]

    乔学光, 邵志华, 包维佳, 荣强周 2017 物理学报 66 074205Google Scholar

    Qiao X G, Shao Z H, Bao W J, Rong Q Z 2017 Acta Phys. Sin. 66 074205Google Scholar

    [24]

    徐萌, 晏建民, 徐志学, 郭磊, 郑仁奎, 李晓光 2018 物理学报 67 157506Google Scholar

    Xu M, Yan J M, Xu Z X, Guo L, Zheng R K, Li X G 2018 Acta Phys. Sin. 67 157506Google Scholar

    [25]

    赵章风, 张文俊, 牛丽丽, 孟龙, 郑海荣 2018 物理学报 67 194302Google Scholar

    Zhao Z F, Zhang W J, Niu L L, Meng L, Zheng H R 2018 Acta Phys. Sin. 67 194302Google Scholar

    [26]

    Wang J S, Xiao J J, Zhao X Y, Wang F F, Tang Y X, Zhang Q Z, Fang B J, Zhu R F, Yue Q W, Liu D X, Deng J 2020 Ceram. Int. 46 11913Google Scholar

    [27]

    Nakano N, Petrovic Z L, Makabe T 1994 Jpn. J. Appl. Phys. 33 2223Google Scholar

    [28]

    Crintea D L, Czarnetzki U, Iordanova S, Koleva I, Luggenholscher D 2009 J. Phys. D: Appl. Phys. 42 045208Google Scholar

    [29]

    Sakoda T, Okraku-Yirenkyi Y, Youl-Moon S, Otsubo M, Chikahisa H 2001 Jpn. J. Appl. Phys. 40 6607Google Scholar

    [30]

    Uchida T, Hamaguchi S 2008 J. Phys. D: Appl. Phys. 41 083001Google Scholar

    [31]

    Wang Y J, Luo C T, Wang S H, Chen C, Yuan G L, Luo H S, Viehland D 2020 Adv. Electron. Mater. 6 1900949Google Scholar

    [32]

    Li Y, Lu G X, Chen J J, Jing J C, Huo T C, Chen R M, Jiang L M, Zhou Q F, Chen Z P 2019 Photoacoustics 15 100138Google Scholar

    [33]

    Jiang L M, Chen R M, Xing J, Lu G X, Li R Z, Jiang Y, Shung K K, Zhu J G, Zhou Q F 2019 J. Appl. Phys. 125 214501Google Scholar

    [34]

    Zhou Q F, Lam K H, Zheng H R, Qiu W B, Shung K K 2014 Prog. Mater. Sci. 66 87Google Scholar

    [35]

    Zhang J S, Ren W, Liu Y T, Wu X Q, Fei C L, Quan Y, Zhou Q F 2018 Sensors 18 1Google Scholar

  • 图 1  实验流程图

    Fig. 1.  Flow chart of the whole experiment.

    图 2  紫外光刻实验结果 (a), (b) 阵元尺寸为12.94 μm时, 光学显微镜下的表面形貌和扫描电子显微镜下的截面图; (c), (d) 阵元尺寸为13.97 μm时, 光学显微镜下的表面形貌和扫描电子显微镜下的截面图

    Fig. 2.  Results of lithography: (a), (b) Surface morphology under optical microscope and cross section under scanning electron microscope when the element size is 12.94 μm; (c), (d) surface morphology under optical microscope and cross section under scanning electron microscope when the element size is 13.97 μm.

    图 3  光刻图案结构示意图

    Fig. 3.  Schematic diagram of lithographic pattern structure.

    图 4  电镀实验结果 (a) 扫描电子显微镜下的表面; (b) 扫描电子显微镜下的截面

    Fig. 4.  Electroplating experiment results: (a) Surface under scanning electron microscope; (b) cross section under scanning electron microscope.

    图 5  刻蚀速率实验结果 (a) 刻蚀速率与天线功率的关系; (b) 刻蚀速率与偏置功率的关系; (c) 刻蚀速率与刻蚀气体流量比的关系

    Fig. 5.  Etching rate experimental results: (a) Relationship between etching rate and antenna power; (b) relationship between etching rate and bias power; (c) relationship between etching rate and etching gas flow ratio.

    图 6  刻蚀结果 (a) 高密度面阵表面形貌; (b) 高密度面阵截面形貌; (c) 锥形阵列截面形貌; (d) 深刻蚀高密度面阵截面形貌

    Fig. 6.  Etching results: (a) Surface morphology of high density array; (b) cross section morphology of high density array; (c) cross section morphology of conical array; (d) the surface morphology of deep etching of high density surface array.

    图 7  压电力显微镜下的不同尺度区域结构 (a) 30 μm × 30 μm区域的表面形貌; (b) 30 μm × 30 μm区域的面外振幅; (c) 30 μm × 30 μm区域的相位; (d) 5 μm × 5 μm区域的表面形貌; (e) 5 μm × 5 μm区域的面外振幅; (f) 5 μm × 5 μm区域的相位; (g) 1 μm × 1 μm区域的表面形貌; (h) 1 μm × 1 μm区域的面外振幅; (i) 1 μm × 1 μm区域的相位

    Fig. 7.  Structure of different scale areas under the piezoelectric microscope: (a) Surface morphology of 30 μm × 30 μm area; (b) out of plane amplitude of 30 μm × 30 μm area; (c) phase of 30 μm × 30 μm area; (d) surface morphology of 5 μm × 5 μm area; (e) out of plane amplitude of 5 μm × 5 μm area; (f) phase of 5 μm × 5 μm area; (g) surface morphology of 1 μm × 1 μm area; (h) out of plane amplitude of 1 μm × 1 μm area; (i) phase of 1 μm × 1 μm area.

    图 8  压电力显微镜下1 μm × 1 μm区域的结果 (a) ± 10 V电压下的面外振幅; (b) ± 10 V电压下的相位; (c) ± 20 V电压下的面外振幅; (d) ± 20 V电压下的相位; (e) ± 30 V电压下的面外振幅; (f) ± 30 V电压下的相位

    Fig. 8.  Results of 1 μm × 1 μm area under the piezoelectric force microscope: (a) Out of plane amplitude at ± 10 V; (b) phase at ± 10 V; (c) out of plane amplitude at ± 20 V; (d) phase at ± 20 V; (e) out of plane amplitude at ± 30 V; (f) phase at ± 30 V.

    图 9  室温下1 μm × 1 μm区域内的原位电场诱导振幅和相位演化

    Fig. 9.  Electric field induced amplitude and phase evolution in situ in the 1 μm × 1 μm area at room temperature

    表 1  电镀液配料成分及含量

    Table 1.  Composition and content of electroplate bath ingredients.

    成分含量
    氨基磺酸镍/g·L–1280—400
    硼酸/g·L–140—50
    阳极活化剂/g·L–160—100
    润湿剂/mL·L–11—5
    去应力剂适量
    下载: 导出CSV
  • [1]

    Wang D W, Cao M S, Zhang S J 2012 J. Am. Ceram. Soc. 95 3220Google Scholar

    [2]

    Wang D W, Cao M S, Zhang S J 2012 Phys. Status Solidi RRL 6 135Google Scholar

    [3]

    Wang D W, Cao M S, Zhao Q L, Cui Y, Zhang S J 2013 Phys. Status Solidi RRL 7 221Google Scholar

    [4]

    Lee J S, Park E C, Lee S H, Lee D S 2005 Mater. Chem. Phys. 90 381Google Scholar

    [5]

    罗豪甦, 沈关顺, 齐振一, 许桂生, 王评初, 乐秀宏, 李金龙, 仲维卓, 殷之文 1997 人工晶体学报 26 191

    Luo H S, Shen G S, Qi Z Y, Xu G S, Wang P C, Le X H, Li J L, Zhong W Z, Yin Z W 1997 J. Synthetic Crystals 26 191

    [6]

    Luo H S, Xu G S, Wang P C, Yin Z W 1999 Ferroelectrics 231 97Google Scholar

    [7]

    Xu G S, Luo H S, Xu H Q, Qi Z Y, Wang P C, Zhong W Z, Yin Z W 2001 J. Cryst. Growth. 222 202Google Scholar

    [8]

    Feng Z Y, He T H, Xu H Q, Luo H S, Yin Z W 2004 Solid. State. Commun. 130 557Google Scholar

    [9]

    Wu X, Liu L H, Li X B, Zhang Q H, Ren B, Lin D, Zhao X Y, Luo H S, Huang Y L 2011 J. Cryst. Growth. 318 865Google Scholar

    [10]

    Deng C G, He C J, Chen Z Y, Chen H B, Mao R, Liu Y W, Zhu K J, Gao H F, Ding Y 2019 J. Appl. Phys. 126 085702Google Scholar

    [11]

    He C J, Chen Z Y, Chen H B, Wu T, Wang J M, Gu X R, Liu Y W, Zhu K J 2018 J. Nanophotonics 12 046019Google Scholar

    [12]

    He C J, Chen H B, Bai F, Fan Z B, Sun L, Xu F, Wang J M, Liu Y W, Zhu K J 2012 J. Appl. Phys. 112 126102Google Scholar

    [13]

    Jia Y M, Luo H S, Zhao X Y, Wang F F 2008 Adv. Mater. 20 4776Google Scholar

    [14]

    He C J, Chen H B, Wang J M, Gu X R, Wu T, Liu Y W 2015 J. Appl. Phys. 117 164104Google Scholar

    [15]

    Yang Y, Jung J H, Yun B K, Zhang F, Pradel K C, Guo W, Wang Z L 2012 Adv. Mater. 24 5357Google Scholar

    [16]

    岳晴雯 2016 博士学位论文 (上海: 中国科学院大学)

    Yue Q W 2016 Ph. D. Dissertation (Shanghai: University of Chinese Academy of Sciences) (in Chinese)

    [17]

    Sun E W, Cao W W 2014 Prog. Mater. Sci. 65 124Google Scholar

    [18]

    Zhu R F, Zhao J, Liu F, Zhang Z, Fang B J, Chen J W, Xu H Q, Wang X A, Luo H S 2020 J. Am. Ceram. Soc. 103 2575Google Scholar

    [19]

    Xie Q X, Hu Y Q, Xue S D, Ma J P, Zhao X Y, Tang Y X, Wang F F, Chew K H, Lin D, Luo H S 2019 Mater. Chem. Phys. 238 121890Google Scholar

    [20]

    Zhang J S, Ren W, Jing X P, Shi P, Wu X Q 2015 Ceram. Int. 41 S656Google Scholar

    [21]

    Jian X H, Li S B, Huang W B, Cui Y Y, Jiang X N 2015 J. Intell. Mater. Syst. Struct. 26 2011Google Scholar

    [22]

    周丹, 罗来慧, 王飞飞, 贾艳敏, 赵祥永, 罗豪甦 2008 物理学报 57 4552Google Scholar

    Zhou D, Luo L H, Wang F F, Jia Y M, Zhao X Y, Luo H S 2008 Acta Phys. Sin. 57 4552Google Scholar

    [23]

    乔学光, 邵志华, 包维佳, 荣强周 2017 物理学报 66 074205Google Scholar

    Qiao X G, Shao Z H, Bao W J, Rong Q Z 2017 Acta Phys. Sin. 66 074205Google Scholar

    [24]

    徐萌, 晏建民, 徐志学, 郭磊, 郑仁奎, 李晓光 2018 物理学报 67 157506Google Scholar

    Xu M, Yan J M, Xu Z X, Guo L, Zheng R K, Li X G 2018 Acta Phys. Sin. 67 157506Google Scholar

    [25]

    赵章风, 张文俊, 牛丽丽, 孟龙, 郑海荣 2018 物理学报 67 194302Google Scholar

    Zhao Z F, Zhang W J, Niu L L, Meng L, Zheng H R 2018 Acta Phys. Sin. 67 194302Google Scholar

    [26]

    Wang J S, Xiao J J, Zhao X Y, Wang F F, Tang Y X, Zhang Q Z, Fang B J, Zhu R F, Yue Q W, Liu D X, Deng J 2020 Ceram. Int. 46 11913Google Scholar

    [27]

    Nakano N, Petrovic Z L, Makabe T 1994 Jpn. J. Appl. Phys. 33 2223Google Scholar

    [28]

    Crintea D L, Czarnetzki U, Iordanova S, Koleva I, Luggenholscher D 2009 J. Phys. D: Appl. Phys. 42 045208Google Scholar

    [29]

    Sakoda T, Okraku-Yirenkyi Y, Youl-Moon S, Otsubo M, Chikahisa H 2001 Jpn. J. Appl. Phys. 40 6607Google Scholar

    [30]

    Uchida T, Hamaguchi S 2008 J. Phys. D: Appl. Phys. 41 083001Google Scholar

    [31]

    Wang Y J, Luo C T, Wang S H, Chen C, Yuan G L, Luo H S, Viehland D 2020 Adv. Electron. Mater. 6 1900949Google Scholar

    [32]

    Li Y, Lu G X, Chen J J, Jing J C, Huo T C, Chen R M, Jiang L M, Zhou Q F, Chen Z P 2019 Photoacoustics 15 100138Google Scholar

    [33]

    Jiang L M, Chen R M, Xing J, Lu G X, Li R Z, Jiang Y, Shung K K, Zhu J G, Zhou Q F 2019 J. Appl. Phys. 125 214501Google Scholar

    [34]

    Zhou Q F, Lam K H, Zheng H R, Qiu W B, Shung K K 2014 Prog. Mater. Sci. 66 87Google Scholar

    [35]

    Zhang J S, Ren W, Liu Y T, Wu X Q, Fei C L, Quan Y, Zhou Q F 2018 Sensors 18 1Google Scholar

  • [1] 赵兴宇, 王丽娜, 韩宏博, 尚洁莹. 系列小分子液体中α弛豫与探针离子电导行为的对比. 物理学报, 2024, 73(14): 147701. doi: 10.7498/aps.73.20240478
    [2] 杜金花, 李雍, 孙宁宁, 赵烨, 郝喜红. (1–x)K0.5Na0.5NbO3-xBi(Mg0.5Ti0.5)O3无铅弛豫铁电陶瓷的介电、铁电和高储能行为. 物理学报, 2020, 69(12): 127703. doi: 10.7498/aps.69.20200213
    [3] 李飞, 张树君, 徐卓. 压电效应—百岁铁电的守护者. 物理学报, 2020, 69(21): 217703. doi: 10.7498/aps.69.20200980
    [4] 郑隆立, 齐世超, 王春明, 石磊. 高居里温度铋层状结构钛钽酸铋(Bi3TiTaO9)的压电、介电和铁电特性. 物理学报, 2019, 68(14): 147701. doi: 10.7498/aps.68.20190222
    [5] 尚勋忠, 陈威, 曹万强. 弛豫铁电体介电可调性的研究. 物理学报, 2012, 61(21): 217701. doi: 10.7498/aps.61.217701
    [6] 刘鹏, 张丹. La诱导(Pb(1-3x/2)Lax)(Zr0.5Sn0.3Ti0.2)O3反铁电介电弛豫研究. 物理学报, 2011, 60(1): 017701. doi: 10.7498/aps.60.017701
    [7] 张丽娜, 赵苏串, 郑嘹赢, 李国荣, 殷庆瑞. 复合层状Bi7Ti4NbO21铁电陶瓷的结构与介电和压电性能研究. 物理学报, 2005, 54(5): 2346-2351. doi: 10.7498/aps.54.2346
    [8] 贺莉蓉, 顾春明, 沈文忠, 曹俊诚, 小川博司, 郭其新. 反应离子刻蚀ZnTe的THz辐射和探测研究. 物理学报, 2005, 54(10): 4938-4943. doi: 10.7498/aps.54.4938
    [9] 沈 韩, 许 华, 陈 敏, 李景德. 超高介电常数非铁电单晶. 物理学报, 2004, 53(5): 1529-1533. doi: 10.7498/aps.53.1529
    [10] 曹万强, 李景德. 聚合物介电弛豫的温度特性. 物理学报, 2002, 51(7): 1634-1638. doi: 10.7498/aps.51.1634
    [11] 刘鹏, 边小兵, 张良莹, 姚熹. (PbBa)(Zr,Sn,Ti)O_3反铁电/弛豫型铁电相界陶瓷的相变与介电、热释电性质. 物理学报, 2002, 51(7): 1628-1633. doi: 10.7498/aps.51.1628
    [12] 刘 鹏, 杨同青, 张良莹, 姚 熹. Pb(Zr,Sn,Ti)O3反铁电陶瓷的低温相变扩散与极化弛豫. 物理学报, 2000, 49(11): 2300-2303. doi: 10.7498/aps.49.2300
    [13] 张兴元, 古川猛夫. 偏氟乙烯/三氟乙烯铁电共聚物的非晶介电弛豫. 物理学报, 1993, 42(8): 1370-1374. doi: 10.7498/aps.42.1370
    [14] 李景德, 李家宝, 符史流, 沈文彬. 自由和随机介电弛豫. 物理学报, 1992, 41(1): 155-161. doi: 10.7498/aps.41.155
    [15] 张静娟, 羊国光, 许超, 廉德亮, 陈俊本, 霍裕平, 高士平, 陈宝钦. 用反应离子刻蚀制备的纯位相片将高斯型激光束变换为均匀束. 物理学报, 1992, 41(12): 1961-1967. doi: 10.7498/aps.41.1961
    [16] 丁屹, 俞文海, 吴昆裕. 快离子导体玻璃滞弹性弛豫的红外发散响应. 物理学报, 1989, 38(1): 134-139. doi: 10.7498/aps.38.134
    [17] 丁屹;吴昆裕;俞文海. 非晶态快离子导体电导特性的低频弛豫理论. 物理学报, 1987, 36(8): 1087-1092. doi: 10.7498/aps.36.1087
    [18] 王弘, 徐斌, 刘希玲, 韩建儒, 尚淑霞. α—AlPO4单晶的压电和弹性性质研究. 物理学报, 1985, 34(12): 1634-1640. doi: 10.7498/aps.34.1634
    [19] 张维平, 李从周. PZT-8型铁电压电陶瓷的低频介电特性. 物理学报, 1982, 31(2): 247-251. doi: 10.7498/aps.31.247
    [20] 朱镛, 张道范. 铌酸锶钠锂单晶电光、热电、介电和压电性能. 物理学报, 1979, 28(2): 234-239. doi: 10.7498/aps.28.234
计量
  • 文章访问数:  6919
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-13
  • 修回日期:  2020-06-04
  • 上网日期:  2020-06-07
  • 刊出日期:  2020-09-20

/

返回文章
返回