搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ITER装置中等离子体旋转和反馈控制对电阻壁模影响的数值研究

曹琦琦 刘悦 王硕

引用本文:
Citation:

ITER装置中等离子体旋转和反馈控制对电阻壁模影响的数值研究

曹琦琦, 刘悦, 王硕

Numerical study of effect of plasma rotation and feedback control on resistive wall mode in ITER

Cao Qi-Qi, Liu Yue, Wang Shuo
PDF
HTML
导出引用
  • 在托卡马克等离子体中, 电阻壁模是非常重要的磁流体不稳定性, 特征时间在毫秒量级. 对长时间稳态运行下的先进托卡马克, 电阻壁模限制着聚变装置的运行参数空间(放电时间和比压), 影响经济效益, 所以研究电阻壁模稳定性至关重要. 本文使用MARS程序, 针对ITER装置上9 MA先进运行平衡位形, 研究了等离子体旋转和反馈控制对电阻壁模的影响. 结果表明, 在没有反馈控制时, 当比压参数${C_\beta }$取0.7, 等离子体环向旋转频率达到1.1%的阿尔芬频率时, 可以完全稳定电阻壁模; 在等离子体环向旋转和反馈控制共同作用时, 比压参数${C_\beta }$取0.7, 反馈增益$|G|$取0.6时, 稳定电阻壁模所需要的等离子体旋转频率为0.2%的阿尔芬频率. 可见, 单独靠等离子体环向旋转稳定电阻壁模所需的旋转频率较大; 而等离子体环向旋转和反馈控制共同作用可以降低稳定电阻壁模的旋转频率临界值, 符合先进托卡马克的运行. 本文的研究结果对中国聚变工程试验堆CFETR的工程设计和运行具有一定指导意义.
    In tokamak plasmas, the resistive wall mode is a very important magnetohydrodynamic instability, and its time scale is on the order of millisecond. For the advanced tokamaks with long-pulse and steady-state operation, the resistive wall mode limits the operating parameter space (the discharge time and the radio of the plasma pressure to the magnetic pressure) of the fusion devices so that it affects the economic benefits. Therefore, it is very important to study the stability of the resistive wall modes in tokamaks. In this work, the influences of the plasma rotations and the feedback controls on the resistive wall modes are studied numerically using MARS code for an ITER 9 MA equilibrium designed for the advanced steady-state scenario. In the equilibrium, the profile of the safety factor has a weak negative magnetic shear in the core region. The safety factor is ${q_0}= 2.44$ on the magnetic axis and ${q_a}= 7.13$ on the plasma boundary. And, the minimum safety factor ${q_{\min }}$ is 1.60. The structure of this kind of weakly negative magnetic shear can generate higher radio of the plasma pressure to the magnetic pressure and it is the important feature of the advanced steady-state scenario. Using MARS code, for two cases: without wall and with ideal wall, the results of growth rates of the external kink modes for different values of ${\beta _{\rm N}}$ are obtained. The limit value of $\beta _{\rm N}^\text{no-wall}$ is 2.49 for the case without wall, and the limit value of $\beta _{\rm N}^\text{ideal-wall}$ is 3.48 for the case with ideal wall. Then, a parameter ${C_\beta } = \left( {{\beta _{\rm{N}}} - \beta _{\rm{N}}^{{\text{no-wall}}}} \right)/\left( {\beta _{\rm{N}}^{{\text{ideal-wall }}} - \beta _{\rm{N}}^{{\text{no-wall }}}} \right)$ is defined. The research results in this work show that with the plasma pressure scaling factor ${C_\beta } = 0.7$ and plasma rotation frequency ${\Omega _{0}} = 1.1\% {\Omega _A}$, the resistive wall modes can be completely stabilized without feedback control. And, with the plasma pressure scaling factor ${C_\beta } = 0.7$ and the feedback gain $\left| G \right| = 0.6$, only plasma rotation with the frequency ${\Omega _{0}} = 0.2\% {\Omega _A}$ can stabilize the resistive wall modes. Therefore, a faster plasma rotation is required to stabilize the resistive wall modes by the plasma flow alone. The synergetic effects of the feedback and the toroidal plasma flow on the stability of the RWM can reduce plasma rotation threshold, which satisfies the requirements for the operation of the advanced tokamaks. The conclusion of this work has a certain reference for the engineering design and the operation of CFETR.
      通信作者: 刘悦, liuyue@dlut.edu.cn ; 王硕, wangs@swip.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11875098, 11805054)和国家磁约束核聚变能发展研究专项(批准号: 2017YFE0300501)资助的课题
      Corresponding author: Liu Yue, liuyue@dlut.edu.cn ; Wang Shuo, wangs@swip.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11875098, 11805054) and the National Magnetic Confinement Fusion Energy Research and Development Program of China (Grant No. 2017YFE0300501)
    [1]

    Haney S W, Freidberg J P 1989 Phys. Plasmas 1 1637

    [2]

    Matsunaga G, Takechi M, Kurita G, Ozeki T, Kamada Y, Team t J T 2007 Plasma Phys. Controlled Fusion 49 95Google Scholar

    [3]

    Gimblett C G 1986 Nucl. Fusion 26 617Google Scholar

    [4]

    Pfirsch D, Tasso H 1971 Nucl. Fusion 11 259Google Scholar

    [5]

    Liu Y, Bondeson A, Gribov Y, Polevoi A 2004 Nucl. Fusion 44 232Google Scholar

    [6]

    Xia G, Liu Y, Liu Y 2014 Plasma Phys. Controlled Fusion 56 095009Google Scholar

    [7]

    Xia G, Liu Y, Liu Y, Hao G Z, Li L 2015 Nucl. Fusion 55 093007Google Scholar

    [8]

    Liu C, Liu Y, Liu Y, Hao G, Li L, Wang Z 2015 Nucl. Fusion 55 063022Google Scholar

    [9]

    Hao G Z, Wang A K, Liu Y Q, Qiu X M 2011 Phys. Rev. Lett. 107 015001Google Scholar

    [10]

    Hao G Z, Liu Y Q, Wang A K, Jiang H B, Lu G M, He H D, Qiu X M 2011 Phys. Plasmas 18 032513Google Scholar

    [11]

    Hao G Z, Liu Y Q, Wang A K, Chen H T, Miao Y T, Wang S, Zhang N, Dong G Q, Xu M 2020 Plasma Phys. Controlled Fusion 62 075007Google Scholar

    [12]

    Wang S, Liu Y Q, Zheng G Y, Song X M, Hao G Z, Xia G L, Li L, Li B, Zhang N, Dong G Q, Bai X 2019 Nucl. Fusion 59 096021Google Scholar

    [13]

    Chu M S, Greene J M, Jensen T H, Miller R L, Bondeson A, Johnson R W, Mauel M E 1995 Phys. Plasmas 2 2236Google Scholar

    [14]

    Ward D J, Bondeson A 1995 Phys. Plasmas 2 1570Google Scholar

    [15]

    Garofalo A M, Jackson G L, La Haye R J, Okabayashi M, Reimerdes H, Strait E J, Ferron J R, Groebner R J, In Y, Lanctot M J, Matsunaga G, Navratil G A, Solomon W M, Takahashi H, Takechi M, Turnbull A D, Team D D 2007 Nucl. Fusion 47 1121Google Scholar

    [16]

    Liu Y Q, Bondeson A, Fransson C M, Lennartson B, Breitholtz C 2000 Phys. Plasmas 7 3681Google Scholar

    [17]

    Liu Y, Chu M S, Chapman I T, Hender T C 2008 Phys. Plasmas 15 112503Google Scholar

    [18]

    Wang Z R, Guo S C, Liu Y Q, Chu M S 2012 Nucl. Fusion 52 063001Google Scholar

    [19]

    Chu M S, Greene J M, Jensen T H, Miller R L, Bondeson A, Johnson R W, Mauel M E 1995 Physics Plasmas 2 2236

    [20]

    Li L, Liu Y, Liu Y Q 2012 Phys. Plasmas 19 012502Google Scholar

  • 图 1  ITER装置极向截面及反馈控制示意图

    Fig. 1.  Geometry of poloidal cross section and feedback control in ITER.

    图 2  ITER装置9 MA先进运行平衡 (a)安全因子剖面; (b)等离子体压强剖面, 由${B_0}^2/{\mu _0}$归一化; (c)质量密度剖面, 磁轴处归一化为1; (d)环向电流密度剖面, 由${B_{0}}/\left( {{\mu _0}{R_0}} \right)$归一化, $s = \sqrt \psi $, $\psi $是归一化的极向通量

    Fig. 2.  Radial profiles of (a)safety factor; (b)equilibrium pressure normalized by factor ${B_0}^2/{\mu _0}$; (c)plasma density normalized to unity at the magnetic axis; (d)toroidal current density normalized by factor ${B_{0}}/\left( {{\mu _0}{R_0}} \right)$ and $s = \sqrt \psi $, $\psi $ is the normalized poloidal flux for ITER target plasma designed for 9 MA steady state scenario.

    图 3  在无壁和有理想壁时, 不同比压下的外扭曲模增长率

    Fig. 3.  Growth rate of external kink versus ${\beta _{\rm{N}}}$ with and without an ideal wall.

    图 4  等离子体比压参量为${C_\beta } = 0.7$、平行黏滞$\kappa _{/\!/}$分别取0.5, 1和1.5时, 不同等离子体旋转频率下的电阻壁模增长率

    Fig. 4.  Growth rate of resistive wall mode versus plasma flow with equilibrium pressure scaling factor ${C_\beta } = 0.7$, parallel viscous coefficient ${\kappa _{/\!/} }$ = 0.5, 1, 1.5.

    图 5  平行黏滞${\kappa _{/\!/} }$取1.5时, 不同等离子体比压参数和不同等离子体旋转频率下的电阻壁模增长率

    Fig. 5.  With parallel viscous coefficient ${\kappa _{/\!/} }=1.5$, growth rate of resistive wall mode versus plasma flow for different equilibrium pressure scaling factor ${C_\beta }$.

    图 6  没有等离子体旋转频率, ${C_\beta }$ =0.7时, 计算得到的主动线圈产生的磁场分布

    Fig. 6.  Without plasma flow and equilibrium pressure scaling factor ${C_\beta } = 0.7$, the calculated magnetic field distribution of active coil.

    图 7  线圈增益幅值为$|G|$ = 0.5时, 上下两组线圈不同相位下电阻壁模的增长率

    Fig. 7.  Growth rate of resistive wall mode with varying phase of feedback gains for upper and lower sets of active coils, feedback gain amplitude $|G|$ = 0.5.

    图 8  在没有等离子体旋转频率、平行黏滞${\kappa _{/\!/} } =1.5$时, 不同的等离子体比压参量, 不同中间线圈的增益下电阻壁模的增长率变化

    Fig. 8.  Without plasma flow and with parallel viscous coefficient ${\kappa _{/\!/} }=1.5$, growth rate of resistive wall mode with varying equilibrium pressure scaling factor versus feedback gains for middle sets of active coils.

    图 9  在没有等离子体旋转频率、平行黏滞${\kappa _{/\!/}} =1.5$时, 不同的等离子体比压参量, 不同上下两组线圈的增益下电阻壁模的增长率变化

    Fig. 9.  Without plasma flow and with parallel viscous coefficient ${\kappa _{/\!/}}=1.5$, growth rate of resistive wall mode with varying equilibrium pressure scaling factor versus feedback gains for upper and lower sets of active coils.

    图 10  在没有等离子体旋转频率、平行黏滞${\kappa _{/\!/} } =1.5$时, 不同的等离子体比压参量, 不同上中下三组线圈的增益下电阻壁模的增长率变化

    Fig. 10.  Without plasma flow and with parallel viscous coefficient ${\kappa _{/\!/} }=1.5$, growth rate of resistive wall mode with varying equilibrium pressure scaling factor versus feedback gains for all three sets of active coils.

    图 11  在等离子体旋转频率${\varOmega _{0}}/{\varOmega _{\rm{A}}}$ = 0.002、平行黏滞${\kappa _{/\!/} }=1.5$时, 不同的等离子体比压参量, 加上旋转后中间线圈的增益和增长率的变化

    Fig. 11.  With plasma flow ${\varOmega _{0}}/{\varOmega _{\rm{A}}}$ = 0.002 and parallel viscous coefficient ${\kappa _{/\!/} }=1.5$, growth rate of resistive wall mode with varying equilibrium pressure scaling factor versus feedback gains for middle sets of active coils.

    图 12  在等离子体旋转频率${\varOmega _{0}}/{\varOmega _{\rm{A}}}$ = 0.002、平行黏滞${\kappa _{/\!/} }=1.5$时, 不同的等离子体比压参量, 加上旋转后上下两组线圈的增益和增长率的变化

    Fig. 12.  With plasma flow ${\varOmega _{0}}/{\varOmega _{\rm{A}}}$ = 0.002 and parallel viscous coefficient ${\kappa _{/\!/} }=1.5$, growth rate of resistive wall mode with varying equilibrium pressure scaling factor versus feedback gains for upper and lower sets of active coils.

    图 13  在等离子体旋转频率${\varOmega _{0}}/{\varOmega _{\rm{A}}}$ = 0.002、平行黏滞${\kappa _{/\!/}}=1.5$时, 不同的等离子体比压参量, 加上旋转后上中下三组线圈的增益和增长率的变化

    Fig. 13.  With plasma flow ${\varOmega _{0}}/{\varOmega _{\rm{A}}}$ = 0.002 and parallel viscous coefficient ${\kappa _{/\!/} }=1.5$, growth rate of resistive wall mode with varying equilibrium pressure scaling factor versus feedback gains for all three sets of active coils.

  • [1]

    Haney S W, Freidberg J P 1989 Phys. Plasmas 1 1637

    [2]

    Matsunaga G, Takechi M, Kurita G, Ozeki T, Kamada Y, Team t J T 2007 Plasma Phys. Controlled Fusion 49 95Google Scholar

    [3]

    Gimblett C G 1986 Nucl. Fusion 26 617Google Scholar

    [4]

    Pfirsch D, Tasso H 1971 Nucl. Fusion 11 259Google Scholar

    [5]

    Liu Y, Bondeson A, Gribov Y, Polevoi A 2004 Nucl. Fusion 44 232Google Scholar

    [6]

    Xia G, Liu Y, Liu Y 2014 Plasma Phys. Controlled Fusion 56 095009Google Scholar

    [7]

    Xia G, Liu Y, Liu Y, Hao G Z, Li L 2015 Nucl. Fusion 55 093007Google Scholar

    [8]

    Liu C, Liu Y, Liu Y, Hao G, Li L, Wang Z 2015 Nucl. Fusion 55 063022Google Scholar

    [9]

    Hao G Z, Wang A K, Liu Y Q, Qiu X M 2011 Phys. Rev. Lett. 107 015001Google Scholar

    [10]

    Hao G Z, Liu Y Q, Wang A K, Jiang H B, Lu G M, He H D, Qiu X M 2011 Phys. Plasmas 18 032513Google Scholar

    [11]

    Hao G Z, Liu Y Q, Wang A K, Chen H T, Miao Y T, Wang S, Zhang N, Dong G Q, Xu M 2020 Plasma Phys. Controlled Fusion 62 075007Google Scholar

    [12]

    Wang S, Liu Y Q, Zheng G Y, Song X M, Hao G Z, Xia G L, Li L, Li B, Zhang N, Dong G Q, Bai X 2019 Nucl. Fusion 59 096021Google Scholar

    [13]

    Chu M S, Greene J M, Jensen T H, Miller R L, Bondeson A, Johnson R W, Mauel M E 1995 Phys. Plasmas 2 2236Google Scholar

    [14]

    Ward D J, Bondeson A 1995 Phys. Plasmas 2 1570Google Scholar

    [15]

    Garofalo A M, Jackson G L, La Haye R J, Okabayashi M, Reimerdes H, Strait E J, Ferron J R, Groebner R J, In Y, Lanctot M J, Matsunaga G, Navratil G A, Solomon W M, Takahashi H, Takechi M, Turnbull A D, Team D D 2007 Nucl. Fusion 47 1121Google Scholar

    [16]

    Liu Y Q, Bondeson A, Fransson C M, Lennartson B, Breitholtz C 2000 Phys. Plasmas 7 3681Google Scholar

    [17]

    Liu Y, Chu M S, Chapman I T, Hender T C 2008 Phys. Plasmas 15 112503Google Scholar

    [18]

    Wang Z R, Guo S C, Liu Y Q, Chu M S 2012 Nucl. Fusion 52 063001Google Scholar

    [19]

    Chu M S, Greene J M, Jensen T H, Miller R L, Bondeson A, Johnson R W, Mauel M E 1995 Physics Plasmas 2 2236

    [20]

    Li L, Liu Y, Liu Y Q 2012 Phys. Plasmas 19 012502Google Scholar

  • [1] 杨进, 陈俊, 王福地, 李颖颖, 吕波, 向东, 尹相辉, 张洪明, 符佳, 刘海庆, 臧庆, 储宇奇, 刘建文, 王勋禺, 宾斌, 何梁, 万顺宽, 龚学余, 叶民友. 东方超环上低杂波驱动等离子体环向旋转实验研究. 物理学报, 2020, 69(5): 055201. doi: 10.7498/aps.69.20191716
    [2] 常峻巍, 朱瑞晗, 张兰芝, 奚婷婷, 郝作强. 整形飞秒激光脉冲的成丝超连续辐射控制. 物理学报, 2020, 69(3): 034206. doi: 10.7498/aps.69.20191438
    [3] 陈斌, 龙金宝, 谢宏泰, 陈泺侃, 陈帅. 可移动三维主动减振系统及其在原子干涉重力仪上的应用. 物理学报, 2019, 68(18): 183301. doi: 10.7498/aps.68.20190443
    [4] 范黎明, 吕明涛, 黄仁忠, 高天附, 郑志刚. 反馈控制棘轮的定向输运效率研究. 物理学报, 2017, 66(1): 010501. doi: 10.7498/aps.66.010501
    [5] 秦天奇, 王飞, 杨博, 罗懋康. 带反馈的分数阶耦合布朗马达的定向输运. 物理学报, 2015, 64(12): 120501. doi: 10.7498/aps.64.120501
    [6] 刘仙, 马百旺, 刘会军. 神经群模型中癫痫状棘波的闭环控制性能研究. 物理学报, 2013, 62(2): 020202. doi: 10.7498/aps.62.020202
    [7] 曾喆昭. 不确定混沌系统的径向基函数神经网络反馈补偿控制. 物理学报, 2013, 62(3): 030504. doi: 10.7498/aps.62.030504
    [8] 葛红霞, 程荣军, 李志鹏. 考虑双速度差效应的耦合映射跟驰模型. 物理学报, 2011, 60(8): 080508. doi: 10.7498/aps.60.080508
    [9] 黄丽莲, 辛方, 王霖郁. 新分数阶超混沌系统的研究与控制及其电路实现. 物理学报, 2011, 60(1): 010505. doi: 10.7498/aps.60.010505
    [10] 史正平. 简易混沌振荡器的混沌特性及其反馈控制电路的设计. 物理学报, 2010, 59(9): 5940-5948. doi: 10.7498/aps.59.5940
    [11] 李钢, 李轶明, 徐燕骥, 张翼, 李汉明, 聂超群, 朱俊强. 介质阻挡放电等离子体对近壁区流场的控制的实验研究. 物理学报, 2009, 58(6): 4026-4033. doi: 10.7498/aps.58.4026
    [12] 萧寒, 唐驾时, 梁翠香. 单频外激励弹簧摆的鞍结分岔控制. 物理学报, 2009, 58(5): 2989-2995. doi: 10.7498/aps.58.2989
    [13] 尹小舟, 刘 勇. 非连续反馈控制激发介质中的螺旋波. 物理学报, 2008, 57(11): 6844-6851. doi: 10.7498/aps.57.6844
    [14] 林 敏, 黄咏梅, 方利民. 双稳系统随机共振的反馈控制. 物理学报, 2008, 57(4): 2041-2047. doi: 10.7498/aps.57.2041
    [15] 都 琳, 徐 伟, 贾飞蕾, 李 爽. 基于低通滤波函数实现陀螺系统的反馈控制. 物理学报, 2007, 56(7): 3813-3819. doi: 10.7498/aps.56.3813
    [16] 陈 漩, 高自友, 赵小梅, 贾 斌. 反馈控制双车道跟驰模型研究. 物理学报, 2007, 56(4): 2024-2029. doi: 10.7498/aps.56.2024
    [17] 刘素华, 唐驾时. Langford系统Hopf分叉的线性反馈控制. 物理学报, 2007, 56(6): 3145-3151. doi: 10.7498/aps.56.3145
    [18] 唐驾时, 萧 寒. 耦合的van der Pol振子的极限环幅值控制. 物理学报, 2007, 56(1): 101-105. doi: 10.7498/aps.56.101
    [19] 于津江, 张明轩, 徐海波. 对称混沌系统的非线性动力学行为及控制. 物理学报, 2004, 53(11): 3701-3705. doi: 10.7498/aps.53.3701
    [20] 岳丽娟, 陈艳艳, 彭建华. 用系统变量比例脉冲方法控制超混沌的电路实验研究. 物理学报, 2001, 50(11): 2097-2102. doi: 10.7498/aps.50.2097
计量
  • 文章访问数:  4614
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-24
  • 修回日期:  2020-10-02
  • 上网日期:  2021-02-04
  • 刊出日期:  2021-02-20

/

返回文章
返回