搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碱金属碘化物和氢碘酸共添加低温制备高稳定的CsPbI3薄膜

闫雅婷 张景研 李斌旗 朱志立 谷锦华

引用本文:
Citation:

碱金属碘化物和氢碘酸共添加低温制备高稳定的CsPbI3薄膜

闫雅婷, 张景研, 李斌旗, 朱志立, 谷锦华

Alkali metal iodides and hydroiodic acid additives for phase-stability CsPbI3 films prepared at low temperature

Yan Ya-Ting, Zhang Jing-Yan, Li Bin-Qi, Zhu Zhi-Li, Gu Jin-Hua
PDF
HTML
导出引用
  • 无机钙钛矿CsPbI3由于好的热稳定性和合适的光学带隙具有很好的发展前景, 作为太阳电池的吸收层, CsPbI3必须形成黑色相(α-CsPbI3). 为了低温制备出空气中稳定的优质α-CsPbI3, 本文在前驱液中同时添加碱金属碘化物(NaI, KI)和氢碘酸(HI). 研究发现: 与仅有HI添加剂相比, 添加碱金属碘化物后低温制备的α-CsPbI3薄膜的质量和稳定性均有提高, 即薄膜致密度提高、晶粒增大、内部缺陷减少、光吸收增强. 因此, 碱金属碘化物和HI共添加是进一步提高CsPbI3无机钙钛矿太阳电池效率和稳定性的有效方法.
    Inorganic cesium lead triiodide (CsPbI3) perovskite films show great prospect due to their high thermal stability and ideal band gap energy. To be used as a photovoltaic absorber, the CsPbI3 must form the black phase (α-CsPbI3). To prepare high-quality CsPbI3 films with phase stability in air at low temperatures, alkali metal iodides and hydroiodic acid (HI) additives are added into precursor solution. The results show that the quality and the phase stability of CsPbI3 with alkali metal iodides and HI additives are obviously improved compared with those with only HI additive. The SEM images show that the CsPbI3 film with 2.5% KI additive becomes more compact than that without KI additive and has no visible pinholes. As the KI additive increases, pinholes start to appear. From the XRD, it can be seen that the crystallinity of perovskite is improved when KI additive increases to 5.0%, while it starts to decrease with KI additive further increasing. The PL intensity of the CsPbI3 film with 2.5% KI additive is higher than the others’, implying a relatively low non-radiative recombination loss and low defect state in that film. And the CsPbI3 film with 2.5% KI additive exhibits increased absorption in the visible region, which is beneficial to enhancing the efficiency of perovskite solar cells. Considering the SEM images, crystallinity, PL intensity and light absorption of perovskite, the optimized KI additive is 2.5% in our work. For the CsPbI3 film with NaI additive, the SEM images show that the films become more compact and have no visible pinholes when NaI additive is 5%. As the NaI additive increases, pinholes appear. The crystallinity of perovskite increases with NaI additive increasing. The PL intensity of the CsPbI3 film with 5% NaI additive is higher than the others’, implying lower defect states in films. And the CsPbI3 film with 5% NaI additive exhibits the improved absorption in the visible region. Considering the SEM images, crystallinity, PL intensity and light absorption of perovskite, the optimized NaI additive is 5%. Therefore, adding alkali metal iodides and HI is an effective method to further improve the stability and efficiency of CsPbI3 perovskite solar cells.
      通信作者: 谷锦华, gujinh@zzu.edu.cn
    • 基金项目: 河南省自然科学基金(批准号: 162300410254)资助的课题
      Corresponding author: Gu Jin-Hua, gujinh@zzu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Henan Province, China (Grant No. 162300410254)
    [1]

    Yang S, Fu W, Zhang Z, Chen H, Li C Z 2017 J. Mater. Chem. A 5 11462Google Scholar

    [2]

    陈永亮, 唐亚文, 陈沛润, 张力, 刘琪, 赵颖, 黄茜, 张晓丹 2020 物理学报 69 138401Google Scholar

    Chen Y L, Tang Y W, Chen P R, Zhang L, Liu Q, Zhao Y, Huang Q, Zhang X D 2020 Acta Phys. Sin. 69 138401Google Scholar

    [3]

    Wang Z, Zeng L X, Zhang C L, Lu Y L, Qiu S D, Wang C, Liu C, Pan L J, Wu S H, Hu J L, Liang G X, Fan P, Egelhaaf H J, Brabec C J, Guo F, Mai Y H 2020 Adv. Funct. Mater. 30 2001240Google Scholar

    [4]

    李少华, 李海涛, 江亚晓, 涂丽敏, 李文标, 潘玲, 杨仕娥, 陈永生 2018 物理学报 67 158801Google Scholar

    Li S H, Li H T, Jiang Y X, Tu L M, Li W B, Pan L, Yang S E, Chen Y S 2018 Acta Phys. Sin. 67 158801Google Scholar

    [5]

    Chang R G, Yan Y T, Zhang J Y, Zhu Z L, Gu J H 2020 Thin Solid Films 712 138279Google Scholar

    [6]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [7]

    Best research-cell efficiencies https://www.nrel.gov/pv/cell-efficiency.html [2020-11-1]

    [8]

    Wang F, Geng W, Zhou Y, Fang H H, Tong C J, Antonietta L M, Liu L M, Zhao N 2016 Adv. Mater. 28 9986Google Scholar

    [9]

    Jiang J X, Wang Q, Jin Z W, Zhang X S, Lei J B, Hai J, Zhang Z G, Li Y f, L iu, S Z 2018 Adv. Energy Mater. 8 1701757Google Scholar

    [10]

    Huang H, Yuan H F, Jansse K P F, Solís-Fernández G, Wang Y, Tan C Y X, Jonckheere D, Debroye E, Long J L, Hendrix J, Hofkens J, Steele J A, Roeffaers M B J 2018 ACS Energy Lett. 3 755Google Scholar

    [11]

    Li Z Z, Zhou F G, Wang Q, Ding L M, Jin Z W 2020 Nano Energy 71 104634Google Scholar

    [12]

    Brennan M C, Draguta S, Kamat P V, Kuno M 2017 ACS Energy Lett. 3 204

    [13]

    Eperon G E, Paterno'Giuseppe M, Sutton R J, Zampetti A, Haghighirad A, Cacialli F, Snaith H 2015 J. Mater. Chem. A 3 19688Google Scholar

    [14]

    Luo P, Xia W, Zhou S W, Sun L, Cheng J G, Xu C X, Lu Y W, 2016 J. Phys. Chem. Lett. 7 3603Google Scholar

    [15]

    Ripolles T S, Nishinaka K, Ogomi Y, Miyata Y, Hayase S 2016 Sol. Energy Mater. Sol. Cells 144 532Google Scholar

    [16]

    Sutton R J, Eperon G E, Miranda L, Parrott E S, Patel J B, Hörantner M T, Johnston M B, Haghighirad A A, Moore D T, Snaith H J 2016 Adv. Energy Mater. 6 1502458Google Scholar

    [17]

    Haque F, Wright M, Mahmud M A, Yi H M, Wang D, Duan L P, Xu C, Upama M B, Uddin A 2018 ACS Omega. 3 11937Google Scholar

    [18]

    Zhou Y Y, Game O S, Pang S P, Padture N P J 2015 Phys. Chem. Lett. 6 4827Google Scholar

    [19]

    Liu F, Zhang Y, Ding C 2017 ACS Nano 11 10373Google Scholar

    [20]

    Straus D B, Kagan C R 2018 Phys. Chem. Lett. 9 1434Google Scholar

    [21]

    Miyata K, Atallah T L, Zhu X Y 2017 Sci. Adv. 3 e1701469Google Scholar

    [22]

    Li B, Zhang Y, Fu L, Yu T, Zhou S, Zhang L, Yin L 2018 Nat.Commun. 9 1076Google Scholar

  • 图 1  不同KI掺杂浓度CsPbI3薄膜的SEM图像 (a) x = 0%; (b) x = 2.5%; (c) x = 5.0%; (d) x = 7.5%; (e) x = 10.0%

    Fig. 1.  SEM surface images of CsPbI3 perovskite films doped with different KI content: (a) x = 0%; (b) x = 2.5%; (c) x = 5.0%; (d) x = 7.5%; (e) x = 10.0%.

    图 2  不同KI掺杂浓度CsPbI3薄膜的 (a) XRD图谱与(b)(100)衍射峰半高宽

    Fig. 2.  (a) (XRD) patterns of CsPbI3 perovskite films doped with different KI content and (b) full width of half maximum at (100) peak

    图 3  不同KI掺杂浓度CsPbI3薄膜的(a) PL谱和(b)吸收谱

    Fig. 3.  (a) PL spectra and (b) UV-vis absorption spectra of CsPbI3 films doped with different KI content.

    图 4  不同NaI掺杂浓度CsPbI3薄膜的SEM图像 (a) x = 0%; (b) x = 2.5%; (c) x = 5.0%; (d) x = 7.5%; (e) x = 10.0%

    Fig. 4.  SEM surface images of CsPbI3 perovskite films doped with different NaI content: (a) x = 0%; (b) x = 2.5%; (c) x = 5.0%; (d) x = 7.5%; (e) x = 10.0%.

    图 5  不同NaI掺杂浓度CsPbI3薄膜的XRD图谱

    Fig. 5.  XRD patterns of CsPbI3 films with different NaI content.

    图 6  不同NaI掺杂浓度CsPbI3薄膜的(a) PL谱和(b)吸收谱

    Fig. 6.  (a) PL spectra, (b) UV-vis absorption spectra of CsPbI3 films doped with different NaI content.

    图 7  未掺杂(0%)、2.5% KI和5.0% NaI掺杂CsPbI3薄膜 (a)在空气中放置24 h后的XRD图谱和(b)新鲜制备及空气中放置24 h后的PL图谱

    Fig. 7.  (a) XRD patterns of undoped, 2.5% KI and 5.0% NaI doped CsPbI3 films exposed for 24 h in ambient air, and (b) PL patterns of the above as-deposited films and films exposed for 24 h in ambient air.

  • [1]

    Yang S, Fu W, Zhang Z, Chen H, Li C Z 2017 J. Mater. Chem. A 5 11462Google Scholar

    [2]

    陈永亮, 唐亚文, 陈沛润, 张力, 刘琪, 赵颖, 黄茜, 张晓丹 2020 物理学报 69 138401Google Scholar

    Chen Y L, Tang Y W, Chen P R, Zhang L, Liu Q, Zhao Y, Huang Q, Zhang X D 2020 Acta Phys. Sin. 69 138401Google Scholar

    [3]

    Wang Z, Zeng L X, Zhang C L, Lu Y L, Qiu S D, Wang C, Liu C, Pan L J, Wu S H, Hu J L, Liang G X, Fan P, Egelhaaf H J, Brabec C J, Guo F, Mai Y H 2020 Adv. Funct. Mater. 30 2001240Google Scholar

    [4]

    李少华, 李海涛, 江亚晓, 涂丽敏, 李文标, 潘玲, 杨仕娥, 陈永生 2018 物理学报 67 158801Google Scholar

    Li S H, Li H T, Jiang Y X, Tu L M, Li W B, Pan L, Yang S E, Chen Y S 2018 Acta Phys. Sin. 67 158801Google Scholar

    [5]

    Chang R G, Yan Y T, Zhang J Y, Zhu Z L, Gu J H 2020 Thin Solid Films 712 138279Google Scholar

    [6]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [7]

    Best research-cell efficiencies https://www.nrel.gov/pv/cell-efficiency.html [2020-11-1]

    [8]

    Wang F, Geng W, Zhou Y, Fang H H, Tong C J, Antonietta L M, Liu L M, Zhao N 2016 Adv. Mater. 28 9986Google Scholar

    [9]

    Jiang J X, Wang Q, Jin Z W, Zhang X S, Lei J B, Hai J, Zhang Z G, Li Y f, L iu, S Z 2018 Adv. Energy Mater. 8 1701757Google Scholar

    [10]

    Huang H, Yuan H F, Jansse K P F, Solís-Fernández G, Wang Y, Tan C Y X, Jonckheere D, Debroye E, Long J L, Hendrix J, Hofkens J, Steele J A, Roeffaers M B J 2018 ACS Energy Lett. 3 755Google Scholar

    [11]

    Li Z Z, Zhou F G, Wang Q, Ding L M, Jin Z W 2020 Nano Energy 71 104634Google Scholar

    [12]

    Brennan M C, Draguta S, Kamat P V, Kuno M 2017 ACS Energy Lett. 3 204

    [13]

    Eperon G E, Paterno'Giuseppe M, Sutton R J, Zampetti A, Haghighirad A, Cacialli F, Snaith H 2015 J. Mater. Chem. A 3 19688Google Scholar

    [14]

    Luo P, Xia W, Zhou S W, Sun L, Cheng J G, Xu C X, Lu Y W, 2016 J. Phys. Chem. Lett. 7 3603Google Scholar

    [15]

    Ripolles T S, Nishinaka K, Ogomi Y, Miyata Y, Hayase S 2016 Sol. Energy Mater. Sol. Cells 144 532Google Scholar

    [16]

    Sutton R J, Eperon G E, Miranda L, Parrott E S, Patel J B, Hörantner M T, Johnston M B, Haghighirad A A, Moore D T, Snaith H J 2016 Adv. Energy Mater. 6 1502458Google Scholar

    [17]

    Haque F, Wright M, Mahmud M A, Yi H M, Wang D, Duan L P, Xu C, Upama M B, Uddin A 2018 ACS Omega. 3 11937Google Scholar

    [18]

    Zhou Y Y, Game O S, Pang S P, Padture N P J 2015 Phys. Chem. Lett. 6 4827Google Scholar

    [19]

    Liu F, Zhang Y, Ding C 2017 ACS Nano 11 10373Google Scholar

    [20]

    Straus D B, Kagan C R 2018 Phys. Chem. Lett. 9 1434Google Scholar

    [21]

    Miyata K, Atallah T L, Zhu X Y 2017 Sci. Adv. 3 e1701469Google Scholar

    [22]

    Li B, Zhang Y, Fu L, Yu T, Zhou S, Zhang L, Yin L 2018 Nat.Commun. 9 1076Google Scholar

  • [1] 雷照康, 武耀蓉, 黄晨阳, 莫润阳, 沈壮志, 王成会, 郭建中, 林书玉. 驻波场中环状空化泡聚集结构的稳定性分析. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20231956
    [2] 刘思雯, 任立志, 金博文, 宋欣, 吴聪聪. 溶液法制备二维钙钛矿层提高甲脒碘化铅钙钛矿太阳能电池稳定性. 物理学报, 2024, 73(6): 068801. doi: 10.7498/aps.73.20231678
    [3] 胡前库, 秦双红, 吴庆华, 李丹丹, 张斌, 袁文凤, 王李波, 周爱国. 三元Nb系和Ta系硼碳化物稳定性和物理性能的第一性原理研究. 物理学报, 2020, 69(11): 116201. doi: 10.7498/aps.69.20200234
    [4] 王丹, 邹娟, 唐黎明. 氢化二维过渡金属硫化物的稳定性和电子特性: 第一性原理研究. 物理学报, 2019, 68(3): 037102. doi: 10.7498/aps.68.20181597
    [5] 胡前库, 侯一鸣, 吴庆华, 秦双红, 王李波, 周爱国. 过渡金属硼碳化物TM3B3C和TM4B3C2稳定性和性能的理论计算. 物理学报, 2019, 68(9): 096201. doi: 10.7498/aps.68.20190158
    [6] 兰林锋, 张鹏, 彭俊彪. 氧化物薄膜晶体管研究进展. 物理学报, 2016, 65(12): 128504. doi: 10.7498/aps.65.128504
    [7] 张攀政, 汪小超, 李菁辉, 冯滔, 张志祥, 范薇, 周申蕾, 马伟新, 朱俭, 林尊琪. 利用啁啾脉冲光谱滤波和非线性偏振旋转技术实现高稳定性和开机自启动的全光纤掺Yb3+光纤锁模激光器. 物理学报, 2016, 65(21): 214207. doi: 10.7498/aps.65.214207
    [8] 王超, 刘骋远, 胡元萍, 刘志宏, 马建峰. 社交网络中信息传播的稳定性研究. 物理学报, 2014, 63(18): 180501. doi: 10.7498/aps.63.180501
    [9] 李秀平, 王善进, 陈琼, 罗诗裕. 参数激励与晶体摆动场辐射的稳定性. 物理学报, 2013, 62(22): 224102. doi: 10.7498/aps.62.224102
    [10] 薛丽, 易林. Al掺杂对合金Mg1-xTix及其氢化物稳定性的影响. 物理学报, 2013, 62(13): 138801. doi: 10.7498/aps.62.138801
    [11] 王参军, 李江城, 梅冬成. 噪声对集合种群稳定性的影响. 物理学报, 2012, 61(12): 120506. doi: 10.7498/aps.61.120506
    [12] 张娟, 周志刚, 石玉仁, 杨红娟, 段文山. 修正KP方程及其孤波解的稳定性. 物理学报, 2012, 61(13): 130401. doi: 10.7498/aps.61.130401
    [13] 王作雷. 一类简化Lang-Kobayashi方程的Hopf分岔及其稳定性. 物理学报, 2008, 57(8): 4771-4776. doi: 10.7498/aps.57.4771
    [14] 王晓秋, 王保林. 嵌入La和Gd原子的Si24笼团簇的稳定性. 物理学报, 2008, 57(10): 6259-6264. doi: 10.7498/aps.57.6259
    [15] 欧阳玉, 彭景翠, 王 慧, 易双萍. 碳纳米管的稳定性研究. 物理学报, 2008, 57(1): 615-620. doi: 10.7498/aps.57.615
    [16] 邹继军, 常本康, 杨 智, 高 频, 乔建良, 曾一平. GaAs光电阴极在不同强度光照下的稳定性. 物理学报, 2007, 56(10): 6109-6113. doi: 10.7498/aps.56.6109
    [17] 李 娟, 吴春亚, 赵淑云, 刘建平, 孟志国, 熊绍珍, 张 芳. 微晶硅薄膜晶体管稳定性研究. 物理学报, 2006, 55(12): 6612-6616. doi: 10.7498/aps.55.6612
    [18] 王 岩, 韩晓艳, 任慧志, 侯国付, 郭群超, 朱 锋, 张德坤, 孙 建, 薛俊明, 赵 颖, 耿新华. 相变域硅薄膜材料的光稳定性. 物理学报, 2006, 55(2): 947-951. doi: 10.7498/aps.55.947
    [19] 张 凯, 冯 俊. 相对论Birkhoff系统的对称性与稳定性. 物理学报, 2005, 54(7): 2985-2989. doi: 10.7498/aps.54.2985
    [20] 欧阳世根, 江德生, 佘卫龙. 复色光伏孤子的稳定性. 物理学报, 2004, 53(9): 3033-3041. doi: 10.7498/aps.53.3033
计量
  • 文章访问数:  3387
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-19
  • 修回日期:  2021-01-05
  • 上网日期:  2021-05-25
  • 刊出日期:  2021-06-05

/

返回文章
返回