-
本文报导了一种二极管叠阵侧面折返泵浦的多边形薄片Nd:YAG激光器, 通过对其增益特性和光学特性的优化, 得到了泵浦光耦合效率为97%, 增益介质吸收效率达87%, 增益介质内泵浦吸收分布均匀性为3.21% (root mean square, RMS)的结果. 实验测得与模拟数据吻合较好的增益介质荧光分布. 在泵浦能量为2.2 J时, 获得了能量0.85 J的激光输出, 光-光效率达38.8%, 斜效率为40.1%. 在1 Hz~100 Hz的频率范围内输出能量保持稳定,在重复频率1 Hz时测得单脉冲能量稳定性为2.7%(RMS), 在稳腔下测得激光衍射极限倍数β约为10.The high-average-power diode-pumped solid-state laser is one of the main research directions in the field of international laser technology, and has major applications in the fields like space exploration, precise detection, fusion research, etc. Under high-power pumping conditions, the conventional rods or slabs are not conducive to effectively removing waste heat. And the thermal effect causes the quality of the laser beam to deteriorate, which limits the further increase of the output power. In this article, the polygonal Nd: YAG thin disk is taken as a gain medium for the laser, and experiments verify that the side pumping method can obtain a higher output power of the all-solid-state pulsed laser while ensuring high beam quality. The gain medium is a regular pentagonal Nd: YAG thin disk with a side-cut-angle of 45°, the crystal thickness is 1.5 mm, and the diameter of the inscribed circle on the front face is 16 mm. Five laser diode arrays are placed symmetrically around the disk, and the pump surfaces are parallel to the sides of the disk. The pump laser propagates along the zigzag path between the upper and lower surface of the disk, thus improving the absorptive efficiency and pump uniformity. Through the optimization study of its gain characteristics and optical characteristics, the high-efficiency high-uniform pumping is achieved. Along the pump light coupling transmission path, the fast-axis collimator is used to control the beams in the fast-axis direction to be nearly parallel, and the large-area pump light is compressed through the coupling structure of cylindrical lens and light guide to match the size of the thin disk, and the pump coupling efficiency measured experimentally is 97%. When the Nd3+ doping concentration in the crystal is 0.3 at.%, the gain medium absorptive efficiency is 87%, and the root mea squared pump absorptive distribution uniformity in the gain medium is 3.21%. The fluorescence distribution of the gain medium is in good agreement with the simulated data. When the pump energy is 2.2 J, a laser output with an energy of 0.85 J is obtained, and optical-to-optical efficiency and slope efficiency are 38.8% and 40.1%, respectively. The single pulse energy stability is 2.7%(RMS) at 1 Hz frequency. In the stable cavity, the beam quality β - factor is measured to be about 10.
-
Keywords:
- thin disk laser /
- side pump /
- pump uniformity
[1] Coyle D B, Stysley P R, Poulios D, Fredrickson R M, Kay R B, Cory K C 2014 Opt. Laser Technol. 63 13Google Scholar
[2] 周寿桓, 赵鸿, 唐小军 2009 中国激光 36 1605Google Scholar
Zhou S H, Zhao H, Tang X J 2009 Chin. J. Lasers 36 1605Google Scholar
[3] Ostermeyer M, Mudge D, Veith P J, Munch J 2006 Appl. Optics 45 5368Google Scholar
[4] Pereira P, Weichelt B, Liang D W, Morais P J, Gouveia H, Abdou-Ahmed M, Voss A, Graf T 2010 Appl. Optics 49 5157Google Scholar
[5] Giesen A, Hügel H, Voss A, Wittig K, Brauch U, Opower H 1994 Appl. Phys. B 58 365
[6] Ongstad A P, Guy M, Chavez J R 2016 Opt. Express 24 108Google Scholar
[7] Yang H M, Feng G Y, Zhou S H 2011 Opt. Laser Technol. 43 1006Google Scholar
[8] Giesen A 2004 Proc. SPIE 5332 212Google Scholar
[9] Avizonis P V, Bossert D J, Curtin M S2009 Conference on Lasers and Electro-Optics/International Quantum Electronics Conference Baltimore, 2009, CThA2
[10] Li P L, Liu Q, Fu X, Gong M L 2013 Chin. Opt. Lett. 11 47
[11] Loescher A, Negel J P, Graf T, Ahmed M A 2016 . Proc. of SPIE 9893 98930N
[12] Jing W, Yu S Q, Ji X B, Xu T, Kang B, Deng J G, Yin W L, Yao Z Y, Huang H 2016 Ceram. Int. 43 5334
[13] 蔡艳芳 2009 硕士学位论文 (北京: 北京工业大学)
Cai Y F 2009 M.S. Thesis (Beijing: Beijing University of Technology) (in Chinese)
[14] Gao S, Liu H, Wang D S, Gong M L 2009 Opt. Express 24 21837
[15] Lera R, Valle-Brozas F, Torres-Peiro S, Ruiz-De-La-Cruz A, Galan M, Bellido P, Seimetz M, Benlloch J M, Roso L 2016 Appl. Optics 55 9573Google Scholar
[16] 张申金, 周寿桓, 吕华昌, 唐晓军, 郭丽娜, 王超, 杜涛, 李斐 2007 红外与激光工程 36 505Google Scholar
Zhang S J, Zhou S H, Lü H C, Tang X J, Guo L N, Wang C, Du T, Li F 2007 Infrared Laser Eng. 36 505Google Scholar
[17] Dascalu T, Taira T 2006 Opt. Express 14 671
[18] 柳强, 巩马理, 潘圆圆, 李晨 2004 物理学报 53 2159Google Scholar
Liu Q, Gong M L, Pan Y Y, Li C 2004 Acta Phys. Sin. 53 2159Google Scholar
[19] Liu Q, Fu X, Ma D, Yan X, He F, Huang L, Gong M, Wang D 2007 Laser Phys. Lett 4 712
[20] Aminpour H, Pflaum C 2014 Pro. of SPIE 8959 89591V
[21] Grigore O V, Croitoru G, Dascalu T, Pavel N 2017 Opt. Laser Technol. 94 86Google Scholar
-
-
[1] Coyle D B, Stysley P R, Poulios D, Fredrickson R M, Kay R B, Cory K C 2014 Opt. Laser Technol. 63 13Google Scholar
[2] 周寿桓, 赵鸿, 唐小军 2009 中国激光 36 1605Google Scholar
Zhou S H, Zhao H, Tang X J 2009 Chin. J. Lasers 36 1605Google Scholar
[3] Ostermeyer M, Mudge D, Veith P J, Munch J 2006 Appl. Optics 45 5368Google Scholar
[4] Pereira P, Weichelt B, Liang D W, Morais P J, Gouveia H, Abdou-Ahmed M, Voss A, Graf T 2010 Appl. Optics 49 5157Google Scholar
[5] Giesen A, Hügel H, Voss A, Wittig K, Brauch U, Opower H 1994 Appl. Phys. B 58 365
[6] Ongstad A P, Guy M, Chavez J R 2016 Opt. Express 24 108Google Scholar
[7] Yang H M, Feng G Y, Zhou S H 2011 Opt. Laser Technol. 43 1006Google Scholar
[8] Giesen A 2004 Proc. SPIE 5332 212Google Scholar
[9] Avizonis P V, Bossert D J, Curtin M S2009 Conference on Lasers and Electro-Optics/International Quantum Electronics Conference Baltimore, 2009, CThA2
[10] Li P L, Liu Q, Fu X, Gong M L 2013 Chin. Opt. Lett. 11 47
[11] Loescher A, Negel J P, Graf T, Ahmed M A 2016 . Proc. of SPIE 9893 98930N
[12] Jing W, Yu S Q, Ji X B, Xu T, Kang B, Deng J G, Yin W L, Yao Z Y, Huang H 2016 Ceram. Int. 43 5334
[13] 蔡艳芳 2009 硕士学位论文 (北京: 北京工业大学)
Cai Y F 2009 M.S. Thesis (Beijing: Beijing University of Technology) (in Chinese)
[14] Gao S, Liu H, Wang D S, Gong M L 2009 Opt. Express 24 21837
[15] Lera R, Valle-Brozas F, Torres-Peiro S, Ruiz-De-La-Cruz A, Galan M, Bellido P, Seimetz M, Benlloch J M, Roso L 2016 Appl. Optics 55 9573Google Scholar
[16] 张申金, 周寿桓, 吕华昌, 唐晓军, 郭丽娜, 王超, 杜涛, 李斐 2007 红外与激光工程 36 505Google Scholar
Zhang S J, Zhou S H, Lü H C, Tang X J, Guo L N, Wang C, Du T, Li F 2007 Infrared Laser Eng. 36 505Google Scholar
[17] Dascalu T, Taira T 2006 Opt. Express 14 671
[18] 柳强, 巩马理, 潘圆圆, 李晨 2004 物理学报 53 2159Google Scholar
Liu Q, Gong M L, Pan Y Y, Li C 2004 Acta Phys. Sin. 53 2159Google Scholar
[19] Liu Q, Fu X, Ma D, Yan X, He F, Huang L, Gong M, Wang D 2007 Laser Phys. Lett 4 712
[20] Aminpour H, Pflaum C 2014 Pro. of SPIE 8959 89591V
[21] Grigore O V, Croitoru G, Dascalu T, Pavel N 2017 Opt. Laser Technol. 94 86Google Scholar
计量
- 文章访问数: 5541
- PDF下载量: 119
- 被引次数: 0