搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多体经典轨迹蒙特卡罗方法的H+, Li3+, Be4+, O7+与He原子电荷交换过程

李国壮 张晟 焦志宏 李新霞

引用本文:
Citation:

基于多体经典轨迹蒙特卡罗方法的H+, Li3+, Be4+, O7+与He原子电荷交换过程

李国壮, 张晟, 焦志宏, 李新霞

Charge transfer in collisions of H+, Li3+, Be4+ and O7+ ions with He atom based on 4-classical trajectory Monte Carlo method

Li Guo-Zhuang, Zhang Sheng, Jiao Zhi-Hong, Li Xin-Xia
PDF
HTML
导出引用
  • 经典轨迹蒙特卡罗(CTMC)方法是研究离子-原子碰撞系统电荷交换过程的常用方法, 广泛应用于天体物理以及实验室等离子体环境下重粒子碰撞过程的研究. 本文利用四体碰撞模型(4-CTMC)研究了包括两个束缚电子的四体碰撞过程, 通过数值求解四体碰撞系统的哈密顿运动方程, 计算了高电荷态入射离子(Li3+, Be4+和O7+)同氦原子在大能量范围的单、双电子电离和俘获截面. H++He碰撞截面的计算中, 在50—200 keV/amu的入射能区, 4-CTMC的结果几乎重复了实验结果. 在高电荷态入射情形下, 4-CTMC计算的单电子电离和俘获截面值相较于三体碰撞模型(3-CTMC)在100—500 keV/amu的入射能区内与实验符合更好. 尽管4-CTMC和3-CTMC忽略了电子关联, 均高估了双电子电离和俘获截面(与实验值相比), 但4-CTMC的结果更接近实验.
    The classical trajectory Monte Carlo (CTMC) method is a common method to study the charge-transfer and impact-ionization cross sections for the collisions between ions and atoms, and the heavy particle collision in astrophysics and laboratory plasma environment. Here in this work, we use the 4-CTMC method to study a four-body collision process including two bound electrons, and the Hamiltonian equation of the four-body dynamic system is solved numerically. The single/double electron ionization and capture cross sections are calculated for collisions of high charge state ions (Li3+, Be4+ and O7+) with helium atom in a wide range of projectile energy. The calculation results show that the results from the 4-CTMC method and the experimental measurements are in better agreement in a projectile energy range of 50-200 keV/amu for proton-helium collision system. In addition, for incident ions with high charge state, the results calculated by the 4-CTMC method are in better agreement with the experimental measurements or other theoretical values in a projectile energy range of 100-500 keV/amu. Though the double ionization and capture cross sections calculated by 4-CTMC or 3-CTMC method are higher than the experimental results due to ignoring the electron correlation, the results from the 4-CTMC method are in better agreement with the experimental results.
      通信作者: 张晟, halifaxy@gmail.com ; 李新霞, li_xx@usc.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11775108)资助的课题
      Corresponding author: Zhang Sheng, halifaxy@gmail.com ; Li Xin-Xia, li_xx@usc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11775108)
    [1]

    Haberli R M, Gombosi T I, DeZeeuw D L, Combi M R, Powell K G 1997 Science 276 939Google Scholar

    [2]

    Cravens T E 1997 Geophys. Res. Lett. 24 105Google Scholar

    [3]

    Apicella M L, Apruzzese G, Mazzitelli G, Ridolfini V P, Alekseyev A G, Lazarev V B, Mirnov S V, Zagórski R 2012 Plasma Phys. Controlled Fusion 54 197Google Scholar

    [4]

    Mavrin A A 2020 Plasma Phys. Controlled Fusion 62 105023Google Scholar

    [5]

    Redmer R, Holst B, Hensel F 2010 Metal-to-Nonmetal Transitions (Berlin, Heidelberg: Springer)

    [6]

    程锐, 张晟, 申国栋, 陈燕红, 张延师, 陈良文, 张子民, 赵全堂, 杨建成, 王瑜玉, 雷瑜, 林平, 杨杰, 杨磊, 马新文, 肖国青, 赵红卫, 詹文龙 2020 中国科学: 物理学 力学 天文学 50 14Google Scholar

    Cheng R, Zhang S, Shen G D, Chen Y H, Zhang Y S, Chen L W, Zhang Z M, Zhao Q T, Yang J C, Wang Y Y, Lei Y, Lin P, Yang J, Yang L, Ma X W, Xiao G Q, Zhao H W, Zhan W L 2020 Sci. Sin.-Phys. Mech. Astron. 50 14Google Scholar

    [7]

    JäKel O, Karger C P, Debus J 2008 Med. Phys. 35 5653Google Scholar

    [8]

    Liamsuwan T, Nikjoo H 2013 Phys. Med. Biol. 58 641Google Scholar

    [9]

    Liamsuwan T, Uehara S, Emfietzoglou D, Nikjoo H 2011 Radiat. Prot. Dosim. 143 152Google Scholar

    [10]

    Benka O, Kropf A 1978 At. Data Nucl. Data Tables 22 219Google Scholar

    [11]

    Brandt W, Lapicki G 1981 Phys. Rev. A 23 1717Google Scholar

    [12]

    宁烨, 何斌, 刘春雷, 颜君, 王建国 2005 物理学报 54 3075Google Scholar

    Ning Y, He B, Liu C L, Yan J, Wang J G 2005 Acta Phys. Sin. 54 3075Google Scholar

    [13]

    Montanari C C, Montenegro E C, Miraglia J E 2010 J. Phys. B: At. Mol. Opt. Phys. 43 165201Google Scholar

    [14]

    杨威, 蔡晓红, 于得洋 2005 物理学报 54 2128Google Scholar

    Yang W, Cai X H, Yu D Y 2005 Acta Phys. Sin. 54 2128Google Scholar

    [15]

    Shimakura N, Koizumi S, Suzuki S, Kimura M 1992 Phys. Rev. A 45 7876Google Scholar

    [16]

    Wu Y, Stancil P C, Liebermann H P, Funke P, Havener C C 2011 Phys. Rev. A 84 022711Google Scholar

    [17]

    Hong X, Wang F, Wu Y, Gou B, Wang J 2016 Phys. Rev. A 93 062706Google Scholar

    [18]

    顾斌, 金年庆, 王志萍, 曾祥华 2005 物理学报 54 4648Google Scholar

    Gu B, Jin N Q, Wang Z P, Zeng X H 2005 Acta Phys. Sin. 54 4648Google Scholar

    [19]

    Abrines R, Percival I C 1966 Proc. Phys. Soc. 88 861Google Scholar

    [20]

    Olson R E, Salop A 1977 Phys. Rev. A 16 531Google Scholar

    [21]

    Reinhold C O, Falcón C 1986 Phys. Rev. A 33 3859Google Scholar

    [22]

    Gray T J, Cocke C L, Justiniano E 1980 Phys. Rev. A 22 849Google Scholar

    [23]

    Pfeifer S J, Olson R E 1982 Phys. Lett. A 92 175Google Scholar

    [24]

    Olson R E 1978 Phys. Rev. A 18 2464Google Scholar

    [25]

    Kirschbaum C L, Wilets L 1980 Phys. Rev. A 21 834Google Scholar

    [26]

    Olson R E, Ullrich J, Schmidt-Böcking H 1989 Phys. Rev. A 39 5572Google Scholar

    [27]

    Frémont F 2018 Atoms 6 68Google Scholar

    [28]

    Frémont F 2020 Atoms 8 19Google Scholar

    [29]

    Bachi N, Otranto S 2019 Eur. Phys. J. D 73 4Google Scholar

    [30]

    Jorge A, Illescas C, Méndez L, Pons B 2016 Phys. Rev. A 94 022710Google Scholar

    [31]

    Pitcher C S, Stangeby P C 1997 Plasma Phys. Controlled Fusion 39 779Google Scholar

    [32]

    Federici G, Skinner C H, Brooks J N 2001 Nucl. Fusion 41 1967Google Scholar

    [33]

    邓柏权, 谢中友 1986 核聚变与等离子体物理 16 22Google Scholar

    Deng B Q, Xie Z Y 1986 Nucl. Fusion Plasma Phys. 16 22Google Scholar

    [34]

    Dunn W R, Branduardi-Raymont G, Elsner R F, Vogt M F, Lamy L, Ford P G, Coates A J, Gladstone G R, Jackman C M, Nichols J D 2016 J. Geophys. Res. Space Phys. 121 2274Google Scholar

    [35]

    Shah M B, Gilbody H B 1999 J. Phys. B: At. Mol. Phys. 18 899Google Scholar

    [36]

    Pivovar L I, Levchenko Y Z, Krivonosov G A 1971 J. Exp. Theor. Phys. 32 11Google Scholar

    [37]

    Santanna M M, Santos A, Coelho L, Jalbert G, Belkic D 2009 Phys. Rev. A 80 042707Google Scholar

    [38]

    Mcguire J H, Burgdorfer J 1987 Phys. Rev. A 36 4089Google Scholar

  • 图 1  四体碰撞系统示意图

    Fig. 1.  Four-body collision system.

    图 2  (a) H++He单电子电离截面; (b) H++He单电子俘获截面

    Fig. 2.  The H++He total cross section for (a) single ionization and (b) electron capture as a function of the projectile energy.

    图 3  H++He双电子电离截面

    Fig. 3.  The H++He total cross section for double ionization.

    图 4  (a) Li3++He单电子电离截面; (b) Li3++He单电子俘获截面

    Fig. 4.  The Li3++He total cross section for (a) single ionization and (b) electron capture as a function of the projectile energy.

    图 5  (a) Li3++He双电子电离截面; (b) Li3++He双电子俘获截面

    Fig. 5.  The Li3++He total cross section for (a) double ionization and (b) electron capture as a function of the projectile energy.

    图 6  (a) Be4++He单电子电离截面; (b) Be4++He单电子俘获截面

    Fig. 6.  The Be4++He total cross section for (a) single ionization and (b) electron capture as a function of the projectile energy.

    图 7  (a) Be4++He双电子电离截面; (b) Be4++He双电子俘获截面

    Fig. 7.  The Be4++He total cross section for (a) double ionization and (b) electron capture as a function of the projectile energy.

    图 8  O7++He碰撞体系的4-CTMC计算结果

    Fig. 8.  The O7++He total cross section calculated by 4-CTMC

    表 1  4-CTMC程序中反应类型判据方法

    Table 1.  Criteria followed for the determination of reactions in 4-CTMC method.

    反应类型ECBEDBECAEDA
    双电子激发C和D被激发 < 0 < 0 ≥ 0 ≥ 0
    双电子俘获C和D被俘获 ≥ 0 ≥ 0 < 0 < 0
    单电子俘获C被俘获、D被激发 ≥ 0 < 0 < 0 ≥ 0
    D被俘获、C被激发 < 0 ≥ 0 ≥ 0 < 0
    双电子电离C和D被电离 ≥ 0 ≥ 0 ≥ 0 ≥ 0
    单电子电离C被电离、D被激发 ≥ 0 < 0 ≥ 0 ≥ 0
    D被电离、C被激发 < 0 ≥ 0 ≥ 0 ≥ 0
    转移电离C被电离、D被俘获 ≥ 0 ≥ 0 ≥ 0 < 0
    D被电离、C被俘获 ≥ 0 ≥ 0 < 0 ≥ 0
    下载: 导出CSV
  • [1]

    Haberli R M, Gombosi T I, DeZeeuw D L, Combi M R, Powell K G 1997 Science 276 939Google Scholar

    [2]

    Cravens T E 1997 Geophys. Res. Lett. 24 105Google Scholar

    [3]

    Apicella M L, Apruzzese G, Mazzitelli G, Ridolfini V P, Alekseyev A G, Lazarev V B, Mirnov S V, Zagórski R 2012 Plasma Phys. Controlled Fusion 54 197Google Scholar

    [4]

    Mavrin A A 2020 Plasma Phys. Controlled Fusion 62 105023Google Scholar

    [5]

    Redmer R, Holst B, Hensel F 2010 Metal-to-Nonmetal Transitions (Berlin, Heidelberg: Springer)

    [6]

    程锐, 张晟, 申国栋, 陈燕红, 张延师, 陈良文, 张子民, 赵全堂, 杨建成, 王瑜玉, 雷瑜, 林平, 杨杰, 杨磊, 马新文, 肖国青, 赵红卫, 詹文龙 2020 中国科学: 物理学 力学 天文学 50 14Google Scholar

    Cheng R, Zhang S, Shen G D, Chen Y H, Zhang Y S, Chen L W, Zhang Z M, Zhao Q T, Yang J C, Wang Y Y, Lei Y, Lin P, Yang J, Yang L, Ma X W, Xiao G Q, Zhao H W, Zhan W L 2020 Sci. Sin.-Phys. Mech. Astron. 50 14Google Scholar

    [7]

    JäKel O, Karger C P, Debus J 2008 Med. Phys. 35 5653Google Scholar

    [8]

    Liamsuwan T, Nikjoo H 2013 Phys. Med. Biol. 58 641Google Scholar

    [9]

    Liamsuwan T, Uehara S, Emfietzoglou D, Nikjoo H 2011 Radiat. Prot. Dosim. 143 152Google Scholar

    [10]

    Benka O, Kropf A 1978 At. Data Nucl. Data Tables 22 219Google Scholar

    [11]

    Brandt W, Lapicki G 1981 Phys. Rev. A 23 1717Google Scholar

    [12]

    宁烨, 何斌, 刘春雷, 颜君, 王建国 2005 物理学报 54 3075Google Scholar

    Ning Y, He B, Liu C L, Yan J, Wang J G 2005 Acta Phys. Sin. 54 3075Google Scholar

    [13]

    Montanari C C, Montenegro E C, Miraglia J E 2010 J. Phys. B: At. Mol. Opt. Phys. 43 165201Google Scholar

    [14]

    杨威, 蔡晓红, 于得洋 2005 物理学报 54 2128Google Scholar

    Yang W, Cai X H, Yu D Y 2005 Acta Phys. Sin. 54 2128Google Scholar

    [15]

    Shimakura N, Koizumi S, Suzuki S, Kimura M 1992 Phys. Rev. A 45 7876Google Scholar

    [16]

    Wu Y, Stancil P C, Liebermann H P, Funke P, Havener C C 2011 Phys. Rev. A 84 022711Google Scholar

    [17]

    Hong X, Wang F, Wu Y, Gou B, Wang J 2016 Phys. Rev. A 93 062706Google Scholar

    [18]

    顾斌, 金年庆, 王志萍, 曾祥华 2005 物理学报 54 4648Google Scholar

    Gu B, Jin N Q, Wang Z P, Zeng X H 2005 Acta Phys. Sin. 54 4648Google Scholar

    [19]

    Abrines R, Percival I C 1966 Proc. Phys. Soc. 88 861Google Scholar

    [20]

    Olson R E, Salop A 1977 Phys. Rev. A 16 531Google Scholar

    [21]

    Reinhold C O, Falcón C 1986 Phys. Rev. A 33 3859Google Scholar

    [22]

    Gray T J, Cocke C L, Justiniano E 1980 Phys. Rev. A 22 849Google Scholar

    [23]

    Pfeifer S J, Olson R E 1982 Phys. Lett. A 92 175Google Scholar

    [24]

    Olson R E 1978 Phys. Rev. A 18 2464Google Scholar

    [25]

    Kirschbaum C L, Wilets L 1980 Phys. Rev. A 21 834Google Scholar

    [26]

    Olson R E, Ullrich J, Schmidt-Böcking H 1989 Phys. Rev. A 39 5572Google Scholar

    [27]

    Frémont F 2018 Atoms 6 68Google Scholar

    [28]

    Frémont F 2020 Atoms 8 19Google Scholar

    [29]

    Bachi N, Otranto S 2019 Eur. Phys. J. D 73 4Google Scholar

    [30]

    Jorge A, Illescas C, Méndez L, Pons B 2016 Phys. Rev. A 94 022710Google Scholar

    [31]

    Pitcher C S, Stangeby P C 1997 Plasma Phys. Controlled Fusion 39 779Google Scholar

    [32]

    Federici G, Skinner C H, Brooks J N 2001 Nucl. Fusion 41 1967Google Scholar

    [33]

    邓柏权, 谢中友 1986 核聚变与等离子体物理 16 22Google Scholar

    Deng B Q, Xie Z Y 1986 Nucl. Fusion Plasma Phys. 16 22Google Scholar

    [34]

    Dunn W R, Branduardi-Raymont G, Elsner R F, Vogt M F, Lamy L, Ford P G, Coates A J, Gladstone G R, Jackman C M, Nichols J D 2016 J. Geophys. Res. Space Phys. 121 2274Google Scholar

    [35]

    Shah M B, Gilbody H B 1999 J. Phys. B: At. Mol. Phys. 18 899Google Scholar

    [36]

    Pivovar L I, Levchenko Y Z, Krivonosov G A 1971 J. Exp. Theor. Phys. 32 11Google Scholar

    [37]

    Santanna M M, Santos A, Coelho L, Jalbert G, Belkic D 2009 Phys. Rev. A 80 042707Google Scholar

    [38]

    Mcguire J H, Burgdorfer J 1987 Phys. Rev. A 36 4089Google Scholar

  • [1] 史路林, 程锐, 王昭, 曹世权, 杨杰, 周泽贤, 陈燕红, 王国东, 惠得轩, 金雪剑, 吴晓霞, 雷瑜, 王瑜玉, 苏茂根. 近玻尔速度能区高电荷态离子与激光等离子体相互作用实验研究装置. 物理学报, 2023, 72(13): 133401. doi: 10.7498/aps.72.20230214
    [2] 张大成, 葛韩星, 巴雨璐, 汶伟强, 张怡, 陈冬阳, 汪寒冰, 马新文. 高电荷态离子阿秒激光光谱研究展望. 物理学报, 2023, 72(19): 193201. doi: 10.7498/aps.72.20230986
    [3] 李国壮, 张晟, 焦志宏, 李新霞. 基于4-CTMC方法的H+、Li3+、Be4+、O7+与He原子电荷交换过程的研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211470
    [4] 韩录会, 张崇宏, 张丽卿, 杨义涛, 宋银, 孙友梅. 低速高电荷态重离子辐照的GaN晶体表面X射线光电子能谱研究. 物理学报, 2010, 59(7): 4584-4590. doi: 10.7498/aps.59.4584
    [5] 邹贤容, 邵剑雄, 陈熙萌, 崔莹. 高电荷态Ar17+离子在表面以下过程中发射X射线分支比及各分支能量的研究. 物理学报, 2010, 59(9): 6064-6070. doi: 10.7498/aps.59.6064
    [6] 吕瑛, 陈熙萌, 曹柱荣, 吴卫东. 低能高电荷态离子(4≤ q ≤7)与He碰撞中双俘获与转移电离的截面反转效应. 物理学报, 2010, 59(6): 3892-3896. doi: 10.7498/aps.59.3892
    [7] 张丽卿, 张崇宏, 杨义涛, 姚存峰, 孙友梅, 李炳生, 赵志明, 宋书建. 高电荷态离子126Xeq+引起GaN表面形貌变化研究. 物理学报, 2009, 58(8): 5578-5584. doi: 10.7498/aps.58.5578
    [8] 徐忠锋, 刘丽莉, 赵永涛, 陈亮, 朱键, 王瑜玉, 肖国青. 不同能量的高电荷态Ar12+离子辐照对Au纳米颗粒尺寸的影响. 物理学报, 2009, 58(6): 3833-3838. doi: 10.7498/aps.58.3833
    [9] 刘玉文, 陈熙萌, 邵剑雄, 丁宝卫, 付宏斌, 崔 莹, 张红强, 鲁彦霞, 高志民, 杜 娟, 陈 林, 孙光智, 尹永智, 于得洋, 蔡晓红. 低电荷态离子原子碰撞过程中的转移电离机理的研究. 物理学报, 2008, 57(5): 2913-2918. doi: 10.7498/aps.57.2913
    [10] 彭海波, 王铁山, 韩运成, 丁大杰, 徐 鹤, 程 锐, 赵永涛, 王瑜玉. 高电荷态离子与Si(110)晶面碰撞的沟道效应研究. 物理学报, 2008, 57(4): 2161-2164. doi: 10.7498/aps.57.2161
    [11] 王 立, 张小安, 杨治虎, 陈熙萌, 张红强, 崔 莹, 邵剑雄, 徐 徐. 高电荷态离子入射Al表面库仑势对靶原子特征谱线强度的影响. 物理学报, 2008, 57(1): 137-142. doi: 10.7498/aps.57.137
    [12] 赵永涛, 肖国青, 徐忠锋, Abdul Qayyum, 王瑜玉, 张小安, 李福利, 詹文龙. 高电荷态离子40Arq+与Si表面作用中的电子发射产额. 物理学报, 2007, 56(10): 5734-5738. doi: 10.7498/aps.56.5734
    [13] 王瑜玉, 赵永涛, 肖国青, 房 燕, 张小安, 王铁山, 王释伟, 彭海波. 高电荷态离子207Pbq+(24≤q≤36)与Si(110)固体表面作用的电子发射研究. 物理学报, 2006, 55(2): 673-676. doi: 10.7498/aps.55.673
    [14] 杨治虎, 宋张勇, 陈熙萌, 张小安, 张艳萍, 赵永涛, 崔 莹, 张红强, 徐 徐, 邵健雄, 于得洋, 蔡晓红. 高电荷态离子Arq+与不同金属靶作用产生的X射线. 物理学报, 2006, 55(5): 2221-2227. doi: 10.7498/aps.55.2221
    [15] 刘春雷, 何 斌, 宁 烨, 颜 君, 王建国. Si2+离子与氢原子碰撞电离过程的CTMC计算. 物理学报, 2005, 54(7): 3206-3212. doi: 10.7498/aps.54.3206
    [16] 曹柱荣, 蔡晓红, 于得洋, 杨 威, 卢荣春, 邵曹杰, 陈熙萌. 高电荷态Xe离子与He原子碰撞中的电子转移过程研究. 物理学报, 2004, 53(9): 2943-2946. doi: 10.7498/aps.53.2943
    [17] 赵永涛, 张小安, 李福利, 肖国青, 詹文龙, 杨治虎. 高电荷态离子126Xeq+与Ti固体表面作用的激发光谱. 物理学报, 2003, 52(11): 2768-2773. doi: 10.7498/aps.52.2768
    [18] 王友德, 杨治虎, 马新文, 刘惠萍, 赵孟春, 周嗣信, 刘占稳, 张文, 张雪珍, 郭晓虹, 潘广炎, 杨锋, 李大万. 高电荷态N4+与Na原子碰撞过程中靶原子激发截面的测量. 物理学报, 1996, 45(10): 1636-1640. doi: 10.7498/aps.45.1636
    [19] 王炎森, 潘立民, 黄发泱, 方渡飞, 汤家镛, 杨福家. 铯离子/原子与金属表面电荷交换的计算. 物理学报, 1994, 43(12): 1950-1956. doi: 10.7498/aps.43.1950
    [20] 潘广炎, 杨锋, 李大万, 刘占稳, 张文, 徐谦, 刘惠萍, 赵孟春. 高电荷态离子N6+与He原子碰撞激发过程的实验研究. 物理学报, 1992, 41(2): 228-232. doi: 10.7498/aps.41.228
计量
  • 文章访问数:  3781
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-10
  • 修回日期:  2021-09-16
  • 上网日期:  2022-01-21
  • 刊出日期:  2022-02-05

/

返回文章
返回