搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超紧凑硅基混合表面等离激元光场窄化器件的实验研究

孙鹏斐 朱科建 许鹏飞 刘兴鹏 孙堂友 李海鸥 周治平

引用本文:
Citation:

超紧凑硅基混合表面等离激元光场窄化器件的实验研究

孙鹏斐, 朱科建, 许鹏飞, 刘兴鹏, 孙堂友, 李海鸥, 周治平

Experimental research on ultracompact silicon hybrid plasmonic nanofocusing device

Sun Peng-Fei, Zhu Ke-Jian, Xu Peng-Fei, Liu Xing-Peng, Sun Tang-You, Li Hai-Ou, Zhou Zhi-Ping
PDF
HTML
导出引用
  • 本文设计、制备了一种基于硅基光电子技术的超紧凑混合表面等离激元光场窄化器件, 并验证了器件的纳米聚焦性能. 实验结果表明, 该光场窄化器件利用了长度约为1.23 μm的锥形渐变结构, 将硅条形波导中的光场聚焦到硅基混合表面等离激元波导中, 在1550 nm的近红外波段最高可实现约20倍的非谐振光场增强效应. 结构简单, 性能优异的硅基混合表面等离激元光场窄化器件, 在光场操控、光传感、非线性光学器件、光相变存储等领域中具有潜在的应用价值.
    Silicon-based optoelectronics, using the mature silicon-based microelectronic complementary metal oxide semiconductor (CMOS) manufacturing process, is a large-scale optoelectronic integration platform that has attracted much attention. Surface plasmonic devices have also received extensive attention in the past decades, and especially the silicon-based surface plasmonic nanofocusing devices have become a research hotspot. Typical nanofocusing structures include chirped surface gratings, plasmonic Fresnel zone plate, nano-slit array, tapered metal tips. However, there occur some inevitable problems in these devices, such as the fine structure being too complex to be fabricated and too large transmission loss of metal slot waveguide. In this work, an ultra-compact hybrid surface plasmon nanofocusing device is designed and fabricated by the silicon-based optoelectronic technology, and the nanofocusing performance of the device is also experimentally verified. The hybrid surface plasmon nanofocusing devices are fabricated on a silicon-on-insulator (SOI) wafer by electron beam lithography (EBL) system. The silicon wire waveguides, tapers and the thin silicon strips in the middle of nanofocusing regions are patterned in only one step EBL. The gold layer is formed by a deposition and lift-off process, and then a partially etching process is introduced to make the thickness of the middle thin silicon strips the same as that of the gold layer. With a 1.23-μm-long tapered structure, our nanofocusing devices focus the light field of a silicon strip waveguide into a hybrid surface plasmon waveguide, making non-resonant optical field increase 20 times in the 1550 nm near-infrared band experimentally. The entire insertion loss is about 4.6 dB, and the mode area of the nanofocusing area is about ${\left( {\lambda /n} \right)^2}/640$ which is over 300 times smaller than that of the input silicon waveguide. When the middle slot silicon waveguide width WSi = 120 nm, the insertion loss reaches a minimum value of 2.8 dB. In our design, we adopt the design of silicon-based hybrid plasmonic waveguides. In this design, a layer of material with low refractive index is inserted between the metal layer and the silicon layer to act as a “container” of light field, which makes this silicon-based hybrid plasmonic waveguides have less loss than the traditional metal plasmonic waveguides, and can still maintain high optical field localization. Such silicon-based hybrid surface plasmon nanofocusing devices with simple structures and excellent performances are promising alternatives for future applications in optical field manipulation, optical sensing, nonlinear optical devices, and optical phase-change storage.
      通信作者: 周治平, zjzhou@pku.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2019YFB2205200)和国家自然科学基金(批准号: 61775005, 62035001)资助的课题.
      Corresponding author: Zhou Zhi-Ping, zjzhou@pku.edu.cn
    • Funds: Project supported by National Key Research and Development Program of China (2019YFB2205200) and the National Natural Science Foundation of China (Grant Nos. 61775005, 62035001).
    [1]

    Zhou Z, Yin B, Deng Q, Li X, Cui J 2015 Photonics Res. 3 B28Google Scholar

    [2]

    Zhou Z, Yin B, Michel J 2015 Light Sci. Appl. 4 e358Google Scholar

    [3]

    Dai D, Bowers J E 2014 Nanophotonics 3 283Google Scholar

    [4]

    Dai D, Bauters J, Bowers J E 2012 Light Sci. Appl. 1 e1Google Scholar

    [5]

    Zhou Z, Bai B, Liu L 2019 IEEE J. Sel. Topics Quantum Electron 25 4600413Google Scholar

    [6]

    Bai B, Yang F, Zhou Z 2019 Photonics Res. 7 289Google Scholar

    [7]

    Chen R, Bai B, Yang F, Zhou Z 2020 Optics Lett. 45 803Google Scholar

    [8]

    Chen R, Bai B, Zhou Z 2020 Photonics Res. 8 1197Google Scholar

    [9]

    Zhu K, Xu P, Sun P, Liu X, Li H, Zhou Z 2020 An Ultra-compact Broadband TE-pass Nanofocusing Structure (Beijing: Optical Society of America)

    [10]

    Zhu K, Xu P, Sun P, Liu X, Li H, Zhou Z 2020 Low Loss, High Extinction Ratio Plasmonic Spot Size Converter (Beijing: Optical Society of America)

    [11]

    Sun P F, Xu P F, Zhu K J, Zhou Z P 2021 Photonics 8 482Google Scholar

    [12]

    Gramotnev D K, Bozhevolnyi S I 2014 Nat. Photonics 8 13Google Scholar

    [13]

    Diaz F J, Li G, de Sterke C M, Kuhlmey B T, Palomba S 2016 J. Opt. Soc. Am. B 33 957Google Scholar

    [14]

    Diaz F J, Hatakeyama T, Rho J, Wang Y, O Brien K, Zhang X, Martijn De Sterke C, Kuhlmey B T, Palomba S 2016 Optics Express 24 545Google Scholar

    [15]

    Kim S, Lim Y, Kim H, Park J, Lee B 2008 Appl. Phys. Lett. 92 13103Google Scholar

    [16]

    Fu Y, Zhou W, Lim L E N, Du C L, Luo X G 2007 Appl. Phys. Lett. 91 61124Google Scholar

    [17]

    Mote R G, Yu S F, Ng B K, Zhou W, Lau S P 2008 Optics Express 16 9554Google Scholar

    [18]

    Shi H, Wang C, Du C, Luo X, Dong X, Gao H 2005 Optics Express 13 6815Google Scholar

    [19]

    Min C, Wang P, Jiao X, Deng Y, Ming H 2008 Appl. Phys. B 90 97Google Scholar

    [20]

    Stockman M I 2004 Phys. Rev. Lett. 93 137404Google Scholar

    [21]

    Babadjanyan A J, Margaryan N L, Nerkararyan K V 2000 J. Appl. Phys. 87 3785Google Scholar

    [22]

    Issa N A, Guckenberger R 2007 Plasmonics 2 31Google Scholar

    [23]

    Gramotnev D K, Vogel M W, Stockman M I 2008 J. Appl. Phys. 104 34311Google Scholar

    [24]

    Veronis G, Fan S 2007 Optics Express 15 1211Google Scholar

    [25]

    Chen L, Shakya J, Lipson M 2006 Optics Letters 31 2133Google Scholar

    [26]

    Ono M, Taniyama H, Xu H, Tsunekawa M, Kuramochi E, Nozaki K, Notomi M 2016 Optica 3 999Google Scholar

  • 图 1  硅基混合表面等离激元光场窄化器件的结构示意图 (a) 三维图; (b) 侧视图; (c) 俯视图; (d) 中间处的截面图

    Fig. 1.  Schematic of the proposed silicon hybrid plasmonic nanofocusing device: (a) 3D perspective view; (b) side view; (c) top view; (d) cross-sectional view at the center.

    图 2  硅基混合表面等离激元光场窄化器件(WSi = 120 nm, g = 30 nm, hm = 30 nm)的光场分布图 (a) 整体俯视图; (b)—(e) 对应于x1 = 0 μm, x2 = –0.8 μm, x3 = –1.4 μm, x4 = –2 μm的截面图

    Fig. 2.  Optical field distribution of the silicon hybrid plasmonic nanofocusing device (g = 30 nm, WSi = 450 nm, hm = 30 nm): (a) Overall top view; (b)–(e) cross-sectional view corresponding to x1 = 0 μm, x2 = –0.8 μm, x3 = –1.4 μm, x4 = –2 μm.

    图 3  仿真计算的不同波导间隙的硅基混合表面等离激元光场窄化器件的场增强因子

    Fig. 3.  Simulated field enhancement factor of the silicon hybrid plasmonic nanofocusing device with different gap width.

    图 4  实验加工的硅基混合表面等离激元光场窄化器件(WSi = 120 nm, g = 30 nm, hm = 30 nm)的(a)光学显微镜图和(b) SEM图(伪彩上色)

    Fig. 4.  (a) SEM image (false-colour) and (b) optical microscope image of the fabricated silicon hybrid plasmonic nanofocusing device (WSi = 120 nm, g = 30 nm, hm = 30 nm).

    图 5  (a) 实验加工的硅基混合表面等离激元光场窄化器件的损耗谱线; (b) 不同间隙宽度g对应的损耗

    Fig. 5.  (a) Experiment insertion loss spectra of the fabricated silicon hybrid plasmonic nanofocusing device; (b) gap width g dependence of insertion loss.

    图 6  实验加工的不同波导间隙的硅基混合表面等离激元光场窄化器件的场增强因子

    Fig. 6.  Field enhancement factor of the fabricated silicon hybrid plasmonic nanofocusing device with different gap width.

  • [1]

    Zhou Z, Yin B, Deng Q, Li X, Cui J 2015 Photonics Res. 3 B28Google Scholar

    [2]

    Zhou Z, Yin B, Michel J 2015 Light Sci. Appl. 4 e358Google Scholar

    [3]

    Dai D, Bowers J E 2014 Nanophotonics 3 283Google Scholar

    [4]

    Dai D, Bauters J, Bowers J E 2012 Light Sci. Appl. 1 e1Google Scholar

    [5]

    Zhou Z, Bai B, Liu L 2019 IEEE J. Sel. Topics Quantum Electron 25 4600413Google Scholar

    [6]

    Bai B, Yang F, Zhou Z 2019 Photonics Res. 7 289Google Scholar

    [7]

    Chen R, Bai B, Yang F, Zhou Z 2020 Optics Lett. 45 803Google Scholar

    [8]

    Chen R, Bai B, Zhou Z 2020 Photonics Res. 8 1197Google Scholar

    [9]

    Zhu K, Xu P, Sun P, Liu X, Li H, Zhou Z 2020 An Ultra-compact Broadband TE-pass Nanofocusing Structure (Beijing: Optical Society of America)

    [10]

    Zhu K, Xu P, Sun P, Liu X, Li H, Zhou Z 2020 Low Loss, High Extinction Ratio Plasmonic Spot Size Converter (Beijing: Optical Society of America)

    [11]

    Sun P F, Xu P F, Zhu K J, Zhou Z P 2021 Photonics 8 482Google Scholar

    [12]

    Gramotnev D K, Bozhevolnyi S I 2014 Nat. Photonics 8 13Google Scholar

    [13]

    Diaz F J, Li G, de Sterke C M, Kuhlmey B T, Palomba S 2016 J. Opt. Soc. Am. B 33 957Google Scholar

    [14]

    Diaz F J, Hatakeyama T, Rho J, Wang Y, O Brien K, Zhang X, Martijn De Sterke C, Kuhlmey B T, Palomba S 2016 Optics Express 24 545Google Scholar

    [15]

    Kim S, Lim Y, Kim H, Park J, Lee B 2008 Appl. Phys. Lett. 92 13103Google Scholar

    [16]

    Fu Y, Zhou W, Lim L E N, Du C L, Luo X G 2007 Appl. Phys. Lett. 91 61124Google Scholar

    [17]

    Mote R G, Yu S F, Ng B K, Zhou W, Lau S P 2008 Optics Express 16 9554Google Scholar

    [18]

    Shi H, Wang C, Du C, Luo X, Dong X, Gao H 2005 Optics Express 13 6815Google Scholar

    [19]

    Min C, Wang P, Jiao X, Deng Y, Ming H 2008 Appl. Phys. B 90 97Google Scholar

    [20]

    Stockman M I 2004 Phys. Rev. Lett. 93 137404Google Scholar

    [21]

    Babadjanyan A J, Margaryan N L, Nerkararyan K V 2000 J. Appl. Phys. 87 3785Google Scholar

    [22]

    Issa N A, Guckenberger R 2007 Plasmonics 2 31Google Scholar

    [23]

    Gramotnev D K, Vogel M W, Stockman M I 2008 J. Appl. Phys. 104 34311Google Scholar

    [24]

    Veronis G, Fan S 2007 Optics Express 15 1211Google Scholar

    [25]

    Chen L, Shakya J, Lipson M 2006 Optics Letters 31 2133Google Scholar

    [26]

    Ono M, Taniyama H, Xu H, Tsunekawa M, Kuramochi E, Nozaki K, Notomi M 2016 Optica 3 999Google Scholar

  • [1] 程宏阳, 马倩茹, 徐浩然, 张慧萍, 金钻明, 何为, 彭滟. 硅基自旋光电子学太赫兹辐射源特性. 物理学报, 2024, 73(16): 167801. doi: 10.7498/aps.73.20240703
    [2] 赵倩如, 王旭阳, 贾雁翔, 张云杰, 卢振国, 钱懿, 邹俊, 李永民. 基于硅基光电子芯片的低损耗动态偏振控制器. 物理学报, 2024, 73(2): 024205. doi: 10.7498/aps.73.20231214
    [3] 李盼. 表面等离激元纳米聚焦研究进展. 物理学报, 2019, 68(14): 146201. doi: 10.7498/aps.68.20190564
    [4] 周悦, 胡志远, 毕大炜, 武爱民. 硅基光电子器件的辐射效应研究进展. 物理学报, 2019, 68(20): 204206. doi: 10.7498/aps.68.20190543
    [5] 杨蒙生, 易泰民, 郑凤成, 唐永建, 张林, 杜凯, 李宁, 赵利平, 柯博, 邢丕峰. 沉积态铀薄膜表面氧化的X射线光电子能谱. 物理学报, 2018, 67(2): 027301. doi: 10.7498/aps.67.20172055
    [6] 赵林, 刘国东, 周兴江. 铁基高温超导体电子结构的角分辨光电子能谱研究. 物理学报, 2018, 67(20): 207413. doi: 10.7498/aps.67.20181768
    [7] 任伦, 李葵英, 崔洁圆, 赵杰. ZnSe量子点敏化纳米TiO2薄膜光电子特性研究. 物理学报, 2017, 66(6): 067301. doi: 10.7498/aps.66.067301
    [8] 肖廷辉, 于洋, 李志远. 石墨烯-硅基混合光子集成电路. 物理学报, 2017, 66(21): 217802. doi: 10.7498/aps.66.217802
    [9] 周培基, 李智勇, 俞育德, 余金中. 硅基光子集成研究进展. 物理学报, 2014, 63(10): 104218. doi: 10.7498/aps.63.104218
    [10] 余志强. 硅基外延OsSi2电子结构及光电特性研究. 物理学报, 2012, 61(21): 217102. doi: 10.7498/aps.61.217102
    [11] 王垒, 蔡卫, 谭信辉, 向吟啸, 张心正, 许京军. 截面形状对快电子激发纳米双线表面等离激元的影响. 物理学报, 2011, 60(6): 067305. doi: 10.7498/aps.60.067305
    [12] 窦卫东, 宋 飞, 黄 寒, 鲍世宁, 陈 桥. Ag(110)表面吸附酞菁铜分子的紫外光电子谱研究. 物理学报, 2008, 57(1): 628-633. doi: 10.7498/aps.57.628
    [13] 杨少鹏, 郑红芳, 李春雷, 傅广生, 李晓苇, 许春华, 李金培. 纳米硫化镍增感的溴化银微晶中光电子衰减特性研究. 物理学报, 2006, 55(5): 2144-2148. doi: 10.7498/aps.55.2144
    [14] 陆赟豪, 段效邦, 吕 萍, 张寒洁, 李海洋, 鲍世宁, 何丕模. 三萘基膦在Ag(110)面上沉积的紫外光电子能谱研究. 物理学报, 2005, 54(9): 4319-4323. doi: 10.7498/aps.54.4319
    [15] 徐彭寿, 邓锐, 潘海斌, 徐法强, 谢长坤, 李拥华, 刘凤琴, 易布拉欣·奎热西. GaN表面极性的光电子衍射研究. 物理学报, 2004, 53(4): 1171-1176. doi: 10.7498/aps.53.1171
    [16] 邹炳锁, 汤国庆, 张桂兰, 陈文驹. 岩盐型ZnO纳米微粒的光电子发射结构. 物理学报, 1995, 44(1): 164-172. doi: 10.7498/aps.44.164
    [17] 季振国, 陈立登, 马向阳, 姚鸿年, 阙端麟. 发光多孔硅的X射线光电子能谱深度剖析. 物理学报, 1995, 44(1): 57-63. doi: 10.7498/aps.44.57
    [18] 张训生, 董峰, 鲍德松, 杜志强. NO在Cu(110)表面吸附的角分辨光电子能谱. 物理学报, 1993, 42(7): 1194-1198. doi: 10.7498/aps.42.1194
    [19] 庄杰佳. 逆契仑柯夫聚焦激光电子加速器. 物理学报, 1984, 33(9): 1255-1260. doi: 10.7498/aps.33.1255
    [20] 莫党, 潘士宏, W. E. SPICER, I. LINDAU. 砷化镓上银和金膜的价带光电子谱. 物理学报, 1983, 32(11): 1467-1470. doi: 10.7498/aps.32.1467
计量
  • 文章访问数:  3723
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-18
  • 修回日期:  2022-06-01
  • 上网日期:  2022-09-15
  • 刊出日期:  2022-10-05

/

返回文章
返回