搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

AlxGa1–xN插入层对双沟道n-Al0.3Ga0.7N/GaN/i-AlxGa1–xN/GaN HEMT器件性能的影响

蔡静 姚若河 耿魁伟

引用本文:
Citation:

AlxGa1–xN插入层对双沟道n-Al0.3Ga0.7N/GaN/i-AlxGa1–xN/GaN HEMT器件性能的影响

蔡静, 姚若河, 耿魁伟

Effect of inserted AlxGa1–xN layer on characteristic of double-channel n-Al0.3Ga0.7N/GaN/i-AlxGa1–xN/GaN HEMT

Cai Jing, Yao Ruo-He, Geng Kui-Wei
PDF
HTML
导出引用
  • 双沟道AlGaN/GaN HEMT器件在电子限域性、电流运输等方面优于单沟道结构, 且能更好地缓解电流崩塌, 提高设备的运行能力, 在高功率应用中具有重要意义. 本文对n-Al0.3Ga0.7N/GaN/i-AlxGa1–xN/GaN结构中的电荷状态以及运输性质进行研究. 通过求解一维薛定谔方程和泊松方程, 获得其电势、电场和电子分布, 分析了双沟道中二维电子气状态与合金无序散射、位错散射的关系. 结果表明, 在第一沟道中, 当AlxGa1–xN的Al组分和厚度提升时, 二维电子气密度逐渐减小, 合金无序散射的减弱使迁移率增大, 位错散射增强致迁移率变小, 总迁移率主要由合金无序散射决定. 在第二沟道中, 当AlxGa1–xN的Al组分和厚度提升时, 二维电子气密度随之增大, 由于较低的势垒高度以及高渗透电子的作用, 第二沟道中的合金无序散射影响更大, 合金无序散射迁移率随AlxGa1–xN层的Al组分和厚度的增加而减少且变化趋势逐渐趋于平缓, 位错散射作用的减弱导致迁移率的提升. 总体上, 第一沟道势阱中受到的位错散射低于第二沟道势阱. 随着背势垒厚度的增加, 第二沟道中主导的散射机制逐渐从位错散射转为合金无序散射.
    With the demand for high-temperature, high-frequency, and high-power microwave applications increasing, AlGaN/GaN high electron mobility transistors (HEMT) have attracted much attention in recent years. Two-dimensional electron gas (2DEG) induced by spontaneous polarization and piezoelectric polarization caused by the uneven charge distribution on Ga-N bond and the large tensile strain guarantees the high performance of AlGaN/GaN HEMT. Compared with single-channel devices, dual-channel AlGaN/GaN HEMT has great application prospects in enhancing the electronic confinement, current drive and alleviating the current collapse. In order to study the physical characteristics, the carrier state and transportation characterization of n-Al0.3Ga0.7N/GaN/i-AlxGa1–xN/GaN multilayer structure are investigated. By calculating the one-dimensional self-consistent Poisson-Schrödinger, the energy band diagram, electric field and charge distribution in the devices are obtained. The 2DEG, alloy disorder and dislocation scattering mechanism in the device are also analyzed by analytical models in which the wave function in finite barriers and Fermi’s rule are used.With AlxGa1–xN layer thickness increasing from 0 nm to 30 nm and Al content rising from 0.1 to 0.2, the concentration of 2DEG localized in the heterointerface is diminished in the first channel. Simultaneously, mobility limited by alloy disorder scattering increases monotonically with the r composition occupation number and the AlxGa1–xN thickness proportion increasing. Besides, dislocation scattering on carriers is strengthened in the same quantum well, resulting in the lower mobility. In the second channel, 2DEG density gets growing when the variables mentioned above is enlarged. The mobility restricted by alloy disorder scattering shows a reverse trend with the variation of the AlxGa1–xN thickness and Al fraction, which more greatly affect the carriers in the parasitic channel due to the lower barrier height and high permeable carriers. Furthermore, the effect of dislocation scattering on channel electrons is gradually weakened, resulting in an increasing mobility. In general, The dislocation scattering effect in the second channel is intenser than that in the first channel.
      通信作者: 姚若河, phrhyao@scut.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2018YFB1802100)和广东省重点领域研发计划(批准号: 2019B010143003)资助的课题.
      Corresponding author: Yao Ruo-He, phrhyao@scut.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2018YFB1802100) and the Key-Area Research and Development Program of Guangdong Province, China (Grant No. 2019B010143003).
    [1]

    Mishra U K, Parikh P, Wu Y F 2002 Proc. IEEE 90 1022Google Scholar

    [2]

    Mohammad S N, Salvador A A, Morkoc H 1995 Proc. IEEE 83 1306Google Scholar

    [3]

    Ibbetson J P, Fini P T, Ness K D, DenBaars S P, Speck J S, Mishrab U K 2000 Appl. Phys. Lett. 77 250Google Scholar

    [4]

    王现彬, 赵正平, 冯志红 2014 物理学报 63 080202Google Scholar

    Wang X B, Zhao Z P, Feng Z H 2014 Acta Phys. Sin. 63 080202Google Scholar

    [5]

    张雪冰, 刘乃漳, 姚若河 2020 物理学报 69 157303Google Scholar

    Zhang X B, Liu N Z, Yao R H 2020 Acta Phys. Sin. 69 157303Google Scholar

    [6]

    Kranti A, Haldar S, Gupta R S 2002 Solid-State Electron. 46 621Google Scholar

    [7]

    Kwon H K, Eiting C J, Lambert D J H, Shelton B S, Wong M M, Zhu T G, Dupuisa R D 1999 Appl. Phys. Lett. 75 2788Google Scholar

    [8]

    Chu R M, Zhou Y G, Zheng Y D, Han P, Shen B, Gu S 2001 Appl. Phys. Lett. 79 2270Google Scholar

    [9]

    Fan Z F, Lu C Z, Botchkarev A E, Tang H, Salvador A, Aktas O, Kim W, Morkog H 1997 Electron. Lett. 33 814Google Scholar

    [10]

    Gaska R, Shur M S, Fjeldly T A 1999 J. Appl. Phys. 85 3009Google Scholar

    [11]

    Chu R, Zhou Y, Jie L, Wang D, Chen K J, Lau K M 2005 IEEE Trans. Electron Devices 52 438Google Scholar

    [12]

    Quan S, Hao Y, Ma X, Zheng P, Xie Y 2010 J. Semicond. 31 044003Google Scholar

    [13]

    Zhang Y., Li Y., Wang J, Shen Y, Hao Y 2020 Nanoscale Res. Lett. 15 1Google Scholar

    [14]

    王冲, 赵梦荻, 裴九清 2016 物理学报 65 038501Google Scholar

    Wang C, Zhao M D, Pei J Q 2016 Acta Phys. Sin. 65 038501Google Scholar

    [15]

    Lee Y J, Yao Y C, Huang C Y, Lin T Y, Cheng L L, Liu C Y, Wang M T Hwang J M 2014 Nanoscale Res. Lett. 9 433Google Scholar

    [16]

    Chakraborty A, Ghosh S, Mukhopadhyay P, Jana S K, Dinara S M, Bag A, Mahata M K, Kumar R, Das S, Das P, Biswas D 2016 Electron. Mater. Lett. 12 232Google Scholar

    [17]

    Chen C Q, Zhang J P 2003 Appl. Phys. Lett. 82 4593Google Scholar

    [18]

    Visalli D, Hove M V, Derluyn J, Cheng K, Degroote S, Leys M, Germain M, Borghs G 2009 Phys. Status Solidi C 6 S988

    [19]

    Yu H B, Lisesivdin S B, Bolukbas B, Kelekci O, Ozturk M K, Ozcelik S, Caliskan D, Ozturk M, Cakmak H, Demirel P, Ozbay E 2010 Phys. Status Solidi A 207 2593Google Scholar

    [20]

    Martins J L, Zunger A 1984 Phys. Rev. B 30 6217Google Scholar

    [21]

    Fang F F, Howard W E 1966 Phys. Rev. Lett. 16 797Google Scholar

    [22]

    Shur M S, Bykhovski A D, Gaska R 2000 Solid-State Electron. 44 205Google Scholar

    [23]

    Walukiewicz W, Ruda H E 1984 Phys. Rev. B 30 4571Google Scholar

    [24]

    Jena D, Gossard A C, Mishra U K 2000 Appl. Phys. Lett. 76 1707Google Scholar

    [25]

    Miyoshi M, Egawa T, Ishikawa H 2015 J. Vac. Sci. Technol. , B 23 1527

    [26]

    Leung K, Wright A F, Stechel E B 1999 Appl. Phys. Lett. 74 2495Google Scholar

  • 图 1  AlGaN/GaN HEMT的(a)基本结构和(b)能带图

    Fig. 1.  (a) Schematic structure and (b) band diagram of AlGaN/GaN HEMT.

    图 2  n-Al0.3Ga0.7N/GaN/i-AlxGa1–xN/GaN外延结构及极化电荷、电子分布

    Fig. 2.  Polarization charge and electron distribution of n-Al0.3Ga0.7N/GaN/i-AlxGa1–xN/GaN epitaxial structure.

    图 3  不同Al组分下n-Al0.3Ga0.7N/GaN/i-AlxGa1–xN/GaN中的(a)能带图和(b)电子分布

    Fig. 3.  (a) Band diagram and (b) electron concentration distribution in n-Al0.3Ga0.7N/GaN/i-AlxGa1–xN/GaN with varying Al composition of the AlxGa1–xN layer.

    图 4  不同Al组分下n-Al0.3Ga0.7N/GaN/i-AlxGa1–xN/GaN中电场的分布

    Fig. 4.  Electric field distribution in n-Al0.3Ga0.7N/GaN/i-AlxGa1–xN/GaN with varying Al composition of the AlxGa1–xN layer.

    图 5  n-Al0.3Ga0.7N/GaN/i-AlxGa1–xN/GaN结构在不同背势垒厚度下的(a)势能和(b)电子分布

    Fig. 5.  (a) Band diagram and (b) electron concentration distribution in n-Al0.3Ga0.7N/GaN/i-AlxGa1–xN/GaN with varying thickness of AlxGa1–xN layer.

    图 6  不同背势垒厚度下n-Al0.3Ga0.7N/GaN/i-AlxGa1–xN/GaN的电场分布

    Fig. 6.  Electric field distribution in n-Al0.3Ga0.7N/GaN/i-AlxGa1–xN/GaN with varying thickness of AlxGa1–xN layer.

    图 7  2DEG密度与AlxGa1–xN厚度在不同Al组分下的关系曲线 (a) channel 1; (b) channel 2

    Fig. 7.  The relationship between the AlxGa1–xN thickness and 2DEG concentration of (a) channel 1 and (b) channel 2 under different Al mole fraction.

    图 8  不同Al组分下合金无序散射迁移率与AlxGa1–xN厚度的关系 (a) channel 1; (b) channel 2

    Fig. 8.  The relationship between the AlxGa1–xN thickness and mobility limited by alloy disorder scattering of (a) channel 1 and (b) channel 2 under different Al mole fraction

    图 9  不同Al组分下位错散射迁移率与AlxGa1–xN厚度的关系 (a) channel 1; (b) channel 2

    Fig. 9.  The relationship between the AlxGa1–xN thickness and mobility limited by dislocation scattering of (a) channel 1 and (b) channel 2 under different Al mole fraction

    图 10  不同Al组分下总迁移率与AlxGa1–xN厚度的关系 (a) channel 1; (b) channel 2

    Fig. 10.  The relationship between the AlxGa1–xN thickness and the total mobility of (a) channel 1 and (b) channel 2 under different Al mole fraction

    图 11  不同Al组分下总迁移率和2DEG的乘积与AlxGa1–xN厚度的关系 (a) channel 1; (b) channel 2

    Fig. 11.  The relationship between the AlxGa1–xN thickness and the product of mobility and 2DEG sheet density of (a) channel 1 and (b) channel 2 under different Al mole fraction

    表 1  AlN, GaN和AlxGa1–xN的各项结构参数(300 K)

    Table 1.  The key parameters of AlN, GaN and AlxGa1 – xN at temperature 300 K.

    参数AlNGaNAlxGa1–xN
    A/(10–10 nm)3.1123.189
    C13/GPa108103
    C33/GPa373405xPAlN + (1 – x) PGaN
    e31/(C·m–2)–0.6–0.49
    e33/(C·m–2)1.460.73
    PSP/(C·m–2)–0.081–0.029
    下载: 导出CSV

    表 2  沟道中2DEG在基态上的占比

    Table 2.  The proportion of 2DEG at the ground-state energy in channel 1 & channel 2.

    x = 0.1x = 0.15x = 0.2x = 0.25
    Nz–1 st在基态E0上的占比0.94510.96690.98720.9909
    Nz–2 nd在基态E0上的占比0.96510.97480.98500.9908
    下载: 导出CSV
  • [1]

    Mishra U K, Parikh P, Wu Y F 2002 Proc. IEEE 90 1022Google Scholar

    [2]

    Mohammad S N, Salvador A A, Morkoc H 1995 Proc. IEEE 83 1306Google Scholar

    [3]

    Ibbetson J P, Fini P T, Ness K D, DenBaars S P, Speck J S, Mishrab U K 2000 Appl. Phys. Lett. 77 250Google Scholar

    [4]

    王现彬, 赵正平, 冯志红 2014 物理学报 63 080202Google Scholar

    Wang X B, Zhao Z P, Feng Z H 2014 Acta Phys. Sin. 63 080202Google Scholar

    [5]

    张雪冰, 刘乃漳, 姚若河 2020 物理学报 69 157303Google Scholar

    Zhang X B, Liu N Z, Yao R H 2020 Acta Phys. Sin. 69 157303Google Scholar

    [6]

    Kranti A, Haldar S, Gupta R S 2002 Solid-State Electron. 46 621Google Scholar

    [7]

    Kwon H K, Eiting C J, Lambert D J H, Shelton B S, Wong M M, Zhu T G, Dupuisa R D 1999 Appl. Phys. Lett. 75 2788Google Scholar

    [8]

    Chu R M, Zhou Y G, Zheng Y D, Han P, Shen B, Gu S 2001 Appl. Phys. Lett. 79 2270Google Scholar

    [9]

    Fan Z F, Lu C Z, Botchkarev A E, Tang H, Salvador A, Aktas O, Kim W, Morkog H 1997 Electron. Lett. 33 814Google Scholar

    [10]

    Gaska R, Shur M S, Fjeldly T A 1999 J. Appl. Phys. 85 3009Google Scholar

    [11]

    Chu R, Zhou Y, Jie L, Wang D, Chen K J, Lau K M 2005 IEEE Trans. Electron Devices 52 438Google Scholar

    [12]

    Quan S, Hao Y, Ma X, Zheng P, Xie Y 2010 J. Semicond. 31 044003Google Scholar

    [13]

    Zhang Y., Li Y., Wang J, Shen Y, Hao Y 2020 Nanoscale Res. Lett. 15 1Google Scholar

    [14]

    王冲, 赵梦荻, 裴九清 2016 物理学报 65 038501Google Scholar

    Wang C, Zhao M D, Pei J Q 2016 Acta Phys. Sin. 65 038501Google Scholar

    [15]

    Lee Y J, Yao Y C, Huang C Y, Lin T Y, Cheng L L, Liu C Y, Wang M T Hwang J M 2014 Nanoscale Res. Lett. 9 433Google Scholar

    [16]

    Chakraborty A, Ghosh S, Mukhopadhyay P, Jana S K, Dinara S M, Bag A, Mahata M K, Kumar R, Das S, Das P, Biswas D 2016 Electron. Mater. Lett. 12 232Google Scholar

    [17]

    Chen C Q, Zhang J P 2003 Appl. Phys. Lett. 82 4593Google Scholar

    [18]

    Visalli D, Hove M V, Derluyn J, Cheng K, Degroote S, Leys M, Germain M, Borghs G 2009 Phys. Status Solidi C 6 S988

    [19]

    Yu H B, Lisesivdin S B, Bolukbas B, Kelekci O, Ozturk M K, Ozcelik S, Caliskan D, Ozturk M, Cakmak H, Demirel P, Ozbay E 2010 Phys. Status Solidi A 207 2593Google Scholar

    [20]

    Martins J L, Zunger A 1984 Phys. Rev. B 30 6217Google Scholar

    [21]

    Fang F F, Howard W E 1966 Phys. Rev. Lett. 16 797Google Scholar

    [22]

    Shur M S, Bykhovski A D, Gaska R 2000 Solid-State Electron. 44 205Google Scholar

    [23]

    Walukiewicz W, Ruda H E 1984 Phys. Rev. B 30 4571Google Scholar

    [24]

    Jena D, Gossard A C, Mishra U K 2000 Appl. Phys. Lett. 76 1707Google Scholar

    [25]

    Miyoshi M, Egawa T, Ishikawa H 2015 J. Vac. Sci. Technol. , B 23 1527

    [26]

    Leung K, Wright A F, Stechel E B 1999 Appl. Phys. Lett. 74 2495Google Scholar

  • [1] 祝曾伟, 张美荣, 乔宝蓉, 陈佳, 杨慧永, 周大勇. 基于Shockley-Queisser模型的异质结太阳电池极限效率计算. 物理学报, 2025, 74(3): 038801. doi: 10.7498/aps.74.20240941
    [2] 张磊, 陈起航, 曹硕, 钱萍. 基于第一性原理计算单层IrSCl和IrSI的载流子迁移率. 物理学报, 2024, 73(21): 217201. doi: 10.7498/aps.73.20241044
    [3] 张冷, 沈宇皓, 汤朝阳, 吴孔平, 张鹏展, 刘飞, 侯纪伟. 单轴应变对Sb2Se3空穴迁移率的影响. 物理学报, 2024, 73(11): 117101. doi: 10.7498/aps.73.20240175
    [4] 张冷, 张鹏展, 刘飞, 李方政, 罗毅, 侯纪伟, 吴孔平. 基于形变势理论的掺杂计算Sb2Se3空穴迁移率. 物理学报, 2024, 73(4): 047101. doi: 10.7498/aps.73.20231406
    [5] 周展辉, 李群, 贺小敏. AlN/β-Ga2O3异质结电子输运机制. 物理学报, 2023, 72(2): 028501. doi: 10.7498/aps.72.20221545
    [6] 底琳佳, 戴显英, 宋建军, 苗东铭, 赵天龙, 吴淑静, 郝跃. 基于锡组分和双轴张应力调控的临界带隙应变Ge1-xSnx能带特性与迁移率计算. 物理学报, 2018, 67(2): 027101. doi: 10.7498/aps.67.20171969
    [7] 白敏, 宣荣喜, 宋建军, 张鹤鸣, 胡辉勇, 舒斌. 压应变Ge/(001)Si1-xGex空穴散射与迁移率模型. 物理学报, 2015, 64(3): 038501. doi: 10.7498/aps.64.038501
    [8] 刘瑞兰, 王徐亮, 唐超. 基于粒子群算法的有机半导体NPB传输特性辨识. 物理学报, 2014, 63(2): 028105. doi: 10.7498/aps.63.028105
    [9] 刘宾礼, 唐勇, 罗毅飞, 刘德志, 王瑞田, 汪波. 基于电压变化率的IGBT结温预测模型研究. 物理学报, 2014, 63(17): 177201. doi: 10.7498/aps.63.177201
    [10] 王红培, 王广龙, 喻颖, 徐应强, 倪海桥, 牛智川, 高凤岐. 内嵌InAs量子点的δ掺杂GaAs/AlxGa1-xAs二维电子气特性分析. 物理学报, 2013, 62(20): 207303. doi: 10.7498/aps.62.207303
    [11] 董海明. 低温下二硫化钼电子迁移率研究. 物理学报, 2013, 62(20): 206101. doi: 10.7498/aps.62.206101
    [12] 郑鑫, 江天, 程湘爱, 江厚满, 陆启生. 波段外激光辐照光导型InSb探测器的一种新现象. 物理学报, 2012, 61(4): 047302. doi: 10.7498/aps.61.047302
    [13] 於黄忠. 空间电荷限制电流法测量共混体系中空穴的迁移率. 物理学报, 2012, 61(8): 087204. doi: 10.7498/aps.61.087204
    [14] 骆杨, 段羽, 陈平, 臧春亮, 谢月, 赵毅, 刘式墉. 利用空间电荷限制电流方法确定三(8-羟基喹啉)铝的电子迁移率特性初步研究. 物理学报, 2012, 61(14): 147801. doi: 10.7498/aps.61.147801
    [15] 张金风, 王平亚, 薛军帅, 周勇波, 张进成, 郝跃. 高电子迁移率晶格匹配InAlN/GaN材料研究. 物理学报, 2011, 60(11): 117305. doi: 10.7498/aps.60.117305
    [16] 代月花, 陈军宁, 柯导明, 孙家讹, 胡 媛. 纳米MOSFET迁移率解析模型. 物理学报, 2006, 55(11): 6090-6094. doi: 10.7498/aps.55.6090
    [17] 杨 靖, 李景镇, 孙秀泉, 龚向东. 硅烷低温等离子体阶跃响应的仿真(1). 物理学报, 2005, 54(7): 3251-3256. doi: 10.7498/aps.54.3251
    [18] 徐静平, 李春霞, 吴海平. 4H-SiC n-MOSFET的高温特性分析. 物理学报, 2005, 54(6): 2918-2923. doi: 10.7498/aps.54.2918
    [19] 许雪梅, 彭景翠, 李宏建, 瞿述, 罗小华. 载流子迁移率对单层有机发光二极管复合效率的影响. 物理学报, 2002, 51(10): 2380-2385. doi: 10.7498/aps.51.2380
    [20] 李志锋, 陆 卫, 叶红娟, 袁先璋, 沈学础, G.Li, S.J.Chua. GaN载流子浓度和迁移率的光谱研究. 物理学报, 2000, 49(8): 1614-1619. doi: 10.7498/aps.49.1614
计量
  • 文章访问数:  4403
  • PDF下载量:  131
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-07
  • 修回日期:  2022-04-18
  • 上网日期:  2022-08-03
  • 刊出日期:  2022-08-20

/

返回文章
返回