搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一款360°连续扫描圆形阵列天线设计

王身云 张康旭 王峰 文舸一

引用本文:
Citation:

一款360°连续扫描圆形阵列天线设计

王身云, 张康旭, 王峰, 文舸一

Design of a 360° continuously scanning circular array anttena

Wang Shen-Yun, Zhang Kang-Xu, Wang Feng, Wen Ge-Yi
PDF
HTML
导出引用
  • 针对室内通信系统, 设计了一款具有360°方位角连续扫描特性的圆形阵列天线. 圆形阵列天线由8个端射单极子八木天线阵元按旋转对称方式构成, 每个天线阵元包含一个激励单极子、一个反射器和4个引向器. 采用同幅同相激励时, 阵列天线可以工作于全向辐射模式; 采用扩展最大功率传输效率法计算最佳激励分布时, 阵列天线工作于定向辐射模式. 仿真和实验结果表明, 阵列天线工作于全向辐射模式的平均增益为3.78 dBi, 增益波动小于2.0 dBi; 阵列天线工作于定向辐射模式时的波束指向可以实现360°方位角连续扫描, 并保证了定向波束增益最大化和水平方位指向, 定向波束最大增益达到11.1 dBi, 方位角扫描增益波动小于0.4 dBi, 前后比大于12.5 dB. 设计的圆形阵列天线具有定向波束增益高、在方位角可连续扫描等技术优势, 可用于未来室内小基站系统.
    In this paper, a 360° continuously scanning circular array antenna is presented. The circular array consists of eight Yagi-Uda monopoles, each one consisting of a driver, a reflector and four directors. When the circular array is fed identically, an azimuthal omnidirectional pattern is obtained. When the circular array is fed with an optimized distribution of excitations that is calculated by the expanded method of maximum power transmission efficiency, an azimuthal directional pattern with maximum directional gain is obtained. The measurement and simulation results indicate that the average gain of the omnidirectional pattern is about 3.78 dBi with azimuthal fluctuation of less than 2.0 dBi, and the maximum gain of the directional pattern is about 11.1 dBi with azimuthal continuously scanning fluctuation of less than 0.4 dBi and front-to-back ratio of larger than 12.5 dB. The reported circular array antenna is featured by high directional gain and 360° azimuthal beam continuous scanning, and it has potential applications in indoor communications.
      通信作者: 王身云, wangsy2006@126.com
    • 基金项目: 国家自然科学基金(批准号: 61971231)资助的课题.
      Corresponding author: Wang Shen-Yun, wangsy2006@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61971231) .
    [1]

    Bellofiore S, Balanis C A, Foutz J, Spanisa A S 2002 IEEE Antennas Propag. Mag. 44 145Google Scholar

    [2]

    蒋基恒, 余世星, 寇娜, 丁召, 张正平 2021 物理学报 70 238401Google Scholar

    Jiang J H, Yu S X, Kou N, Ding Z Zhang Z P 2021 Acta Phys. Sin. 70 238401Google Scholar

    [3]

    胡昌海, 王任, 陈传升, 王秉中 2021 物理学报 70 098401Google Scholar

    Hu C H, Wang R, Chen C S, Wang B Z 2021 Acta Phys. Sin. 70 098401Google Scholar

    [4]

    Yang X D, Geyi W, Sun H C 2017 IEEE Antennas Wirel. Propag. Lett. 16 1824Google Scholar

    [5]

    Wan W, Wen G Y, Gao S 2018 IEEE Access 6 16092Google Scholar

    [6]

    Wen S C, Xu Y Z, Dong Y D 2021 IEEE Antennas Wirel. Propag. Lett. 20 488Google Scholar

    [7]

    Miao X B, Wan W, Duan Z, Wen G Y 2019 IEEE Antennas Wirel. Propag. Lett. 18 752Google Scholar

    [8]

    Taillefer E, Hirata A, Ohira T 2005 IEEE Trans. Antennas Propag. 53 678Google Scholar

    [9]

    Lu J W, Irelan D, Schlub R 2005 IEEE Trans. Antennas Propag. 53 2437Google Scholar

    [10]

    Liu H T, Gao S, Hong Loh T 2011 IEEE Antennas Wirel. Propag. Lett. 10 1349Google Scholar

    [11]

    Liu H T, Gao S, Hong Loh T 2012 IEEE Trans. Antennas Propag. 60 1540Google Scholar

    [12]

    Juan Y, Che W Q, Yang W C, Chen Z N 2017 IEEE Antennas Wirel. Propag. Lett. 16 557Google Scholar

    [13]

    Ababil Hossain M, Bahceci I, Cetiner B A 2017 IEEE Trans. Antennas Propag. 65 6444Google Scholar

    [14]

    Yang Y, Zhu X 2018 IEEE Trans. Antennas Propag. 66 600Google Scholar

    [15]

    Fan H J, Liang X L, Geng J P, Jin R H, Zhou X L 2016 IEEE Trans. Antennas Propag. 64 3228Google Scholar

    [16]

    Ge L, Li M J, Li Y J, Wong H, Luk K M 2018 IEEE Trans. Antennas Propag. 66 1747Google Scholar

    [17]

    Shahidul Alam M, Abbosh A 2016 IET Microw. Antennas Propag. 10 1030Google Scholar

    [18]

    Jin G P, Li M L, Liu D, Zeng G J 2018 IEEE Antennas Wirel. Propag. Lett. 17 1664Google Scholar

    [19]

    Wang P Y, Jin T, Meng F Y, Lyu Y L, Erni D, Wu Q, Zhu L 2018 IEEE Trans. Antennas Propag. 66 627Google Scholar

    [20]

    Kahar M, Kanti Mandal M 2021 IEEE Trans. Antennas Propag. 69 3538Google Scholar

    [21]

    Zhu H L, Wai Cheung S, lp Yuk T 2015 IET Microw. Antennas Propag. 9 1331Google Scholar

    [22]

    Tang M C, Ziolkowski R W 2015 IET Microw. Antennas Propag. 9 1363Google Scholar

    [23]

    韩亚娟, 张介秋, 李勇峰, 王甲富, 屈绍波, 张安学 2016 物理学报 65 147301Google Scholar

    Han Y J, Zhang J Q, Li Y F, Wang F J, Qu S B, Zhang A X 2016 Acta Phys. Sin. 65 147301Google Scholar

    [24]

    Tang M C, Duan Y L, Wu Z T, Chen X M, Li M, Ziolkowski R W 2019 IEEE Trans. Antennas Propag. 67 1467Google Scholar

    [25]

    Wen Y B, Qin P Y, Wei G M, Ziolkowski R W 2022 IEEE Trans. Antennas Propag. 70 6042Google Scholar

    [26]

    Schlub R, Lu J W, Ohira T 2003 IEEE Trans. Antennas Propag. 51 3033Google Scholar

    [27]

    Schlub R, Thiel D V 2004 IEEE Trans. Antennas Propag. 52 1343Google Scholar

    [28]

    Shan L, Wen G Y 2014 IEEE Trans. Antennas Propag. 62 5565Google Scholar

    [29]

    王身云, 郑淏予, 李阳 2020 物理学报 69 218402Google Scholar

    Wang S Y, Zheng H Y, Li Y 2020 Acta Phys. Sin. 69 218402Google Scholar

    [30]

    Wen G Y 2021 IEEE Open J. Antennas Propag. 2 412Google Scholar

    [31]

    Wang S Y, Jin X R, Liu P, Geyi W 2022 IEEE Antennas Wirel. Propag. Lett. 21 2512Google Scholar

  • 图 1  三种地板结构的圆形阵列天线 (a) 全局地板; (b) 局部地板; (c)开槽局部地板

    Fig. 1.  Circular array antenna with three ground structures: (a) Full ground; (b) partial ground; (c) partial ground with slots.

    图 2  (a) 扇区单元结构; (b) 开槽局部地板结构

    Fig. 2.  (a) Structure of sector unit; (b) partial ground with slots.

    图 3  三种八木圆形阵列天线的(a)回波损耗和(b)相邻阵元隔离度

    Fig. 3.  (a) Return loss and (b) isolation of the three Yagi circular arrays.

    图 4  0°扇区天线阵元增益 (a) xoz面; (b) xoy

    Fig. 4.  Element gain patterns of the three arrays in the 0° zone: (a) xoz plane; (b) xoy plane.

    图 5  三种地板结构的电流分布 (a) 全局地板; (b) 局部地板; (c)开槽局部地板

    Fig. 5.  Current distributions of the three ground structures: (a) Full ground; (b) partial ground; (c) partial ground with slots.

    图 6  广义无线功率传输系统

    Fig. 6.  Generalized wireless power transfer system.

    图 7  射频馈电网络 (a) 原理图; (b) 实物图

    Fig. 7.  Radio frequency feeding network: (a) Schematic diagram; (b) photo picture.

    图 8  圆形阵列天线实物图 (a)正面; (b)背面

    Fig. 8.  Photo of the circular array antenna: (a) Front view; (b) back view.

    图 9  圆形阵列天线阵元反射系数模和相邻阵元间隔离度

    Fig. 9.  Element reflection and adjacent isolation of the circular array.

    图 10  天线系统实物图

    Fig. 10.  Photo of the antenna system.

    图 11  全向波束增益方向图 (a) xoy面; (b) yoz

    Fig. 11.  Gain pattern of the omnidirectional beam: (a) xoy plane; (b) yoz plane.

    图 12  定向波束增益方向图 (a) 0°; (b) 15°; (c) 30°; (d) 45°

    Fig. 12.  Gain pattern of the directional beam: (a) 0°; (b) 15°; (c) 30°; (d) 45°.

    图 13  定向波束最大增益与方位角关系

    Fig. 13.  Peak gain of the directional beam versus azimuthal angle.

    表 1  带开槽局部地板结构的圆形阵列天线结构参数

    Table 1.  Parameters of the circular array antenna with slotted partial ground.

    ParameterValues/mmParameterValues/mm
    h135.0l22.5
    h222.5l34.0
    h322.0l426.8
    R120.0l561.2
    d129.0w110.6
    d222.0w21.3
    d316.0w315.0
    l113.0w42.0
    下载: 导出CSV

    表 2  不同方位定向波束的圆形阵列天线激励分布(最佳幅值和相位)

    Table 2.  Excitations (optimum amplitude and phase) of the circular array antenna for different directional beams.

    PortAzimuthal angle/(°)
    0153045
    10.74,∠–96°0.71,∠–118°0.60,∠–106°0.43,∠–119°
    20.44,∠0°0.60,∠–80°0.70,∠–144°0.75,∠146°
    30.16,∠114°0.19,∠26°0.29,∠–25°0.43,∠–119°
    40.10,∠16°0.09,∠–99°0.12,∠131°0.16,∠–7°
    50, ∠178°0.03,∠155°0.04,∠–44°0.09,∠–116°
    60.10,∠12°0.03,∠–18°0.03,∠106°0.05,∠56°
    70.17,∠113°0.13,∠156°0.10,∠–155°0.09,∠–111°
    80.44,∠0°0.27,∠0°0.20,∠0°0.16,∠0°
    下载: 导出CSV

    表 3  圆形阵列天线性能对比

    Table 3.  Comparison of the recent work with reported circular arrays.

    Ref.Working frequency bands/GHzSize of the circular array
    ($ {\lambda _0} \times {\lambda _0} $)
    No. of the antenna elementNo. of beams for
    360° coverage
    Realized maximum gain/dBi
    [5]0.783—0.8860.9×0.94166.0
    [7]2.32—2.780.64×0.64888.4
    [15]4.78—5.191.9×1.96129.2
    [16]1.65—2.750.51×0.51445.4
    [17]2.35—2.610.64×0.64884.5
    [18]2.25—3.160.61×0.61444.1
    [19]0.7—1.20.43×0.43663.1
    [20]8.8—11.23.02×3.02885.2
    This work3.26—3.732.72×2.728Continuous11.1
    下载: 导出CSV
  • [1]

    Bellofiore S, Balanis C A, Foutz J, Spanisa A S 2002 IEEE Antennas Propag. Mag. 44 145Google Scholar

    [2]

    蒋基恒, 余世星, 寇娜, 丁召, 张正平 2021 物理学报 70 238401Google Scholar

    Jiang J H, Yu S X, Kou N, Ding Z Zhang Z P 2021 Acta Phys. Sin. 70 238401Google Scholar

    [3]

    胡昌海, 王任, 陈传升, 王秉中 2021 物理学报 70 098401Google Scholar

    Hu C H, Wang R, Chen C S, Wang B Z 2021 Acta Phys. Sin. 70 098401Google Scholar

    [4]

    Yang X D, Geyi W, Sun H C 2017 IEEE Antennas Wirel. Propag. Lett. 16 1824Google Scholar

    [5]

    Wan W, Wen G Y, Gao S 2018 IEEE Access 6 16092Google Scholar

    [6]

    Wen S C, Xu Y Z, Dong Y D 2021 IEEE Antennas Wirel. Propag. Lett. 20 488Google Scholar

    [7]

    Miao X B, Wan W, Duan Z, Wen G Y 2019 IEEE Antennas Wirel. Propag. Lett. 18 752Google Scholar

    [8]

    Taillefer E, Hirata A, Ohira T 2005 IEEE Trans. Antennas Propag. 53 678Google Scholar

    [9]

    Lu J W, Irelan D, Schlub R 2005 IEEE Trans. Antennas Propag. 53 2437Google Scholar

    [10]

    Liu H T, Gao S, Hong Loh T 2011 IEEE Antennas Wirel. Propag. Lett. 10 1349Google Scholar

    [11]

    Liu H T, Gao S, Hong Loh T 2012 IEEE Trans. Antennas Propag. 60 1540Google Scholar

    [12]

    Juan Y, Che W Q, Yang W C, Chen Z N 2017 IEEE Antennas Wirel. Propag. Lett. 16 557Google Scholar

    [13]

    Ababil Hossain M, Bahceci I, Cetiner B A 2017 IEEE Trans. Antennas Propag. 65 6444Google Scholar

    [14]

    Yang Y, Zhu X 2018 IEEE Trans. Antennas Propag. 66 600Google Scholar

    [15]

    Fan H J, Liang X L, Geng J P, Jin R H, Zhou X L 2016 IEEE Trans. Antennas Propag. 64 3228Google Scholar

    [16]

    Ge L, Li M J, Li Y J, Wong H, Luk K M 2018 IEEE Trans. Antennas Propag. 66 1747Google Scholar

    [17]

    Shahidul Alam M, Abbosh A 2016 IET Microw. Antennas Propag. 10 1030Google Scholar

    [18]

    Jin G P, Li M L, Liu D, Zeng G J 2018 IEEE Antennas Wirel. Propag. Lett. 17 1664Google Scholar

    [19]

    Wang P Y, Jin T, Meng F Y, Lyu Y L, Erni D, Wu Q, Zhu L 2018 IEEE Trans. Antennas Propag. 66 627Google Scholar

    [20]

    Kahar M, Kanti Mandal M 2021 IEEE Trans. Antennas Propag. 69 3538Google Scholar

    [21]

    Zhu H L, Wai Cheung S, lp Yuk T 2015 IET Microw. Antennas Propag. 9 1331Google Scholar

    [22]

    Tang M C, Ziolkowski R W 2015 IET Microw. Antennas Propag. 9 1363Google Scholar

    [23]

    韩亚娟, 张介秋, 李勇峰, 王甲富, 屈绍波, 张安学 2016 物理学报 65 147301Google Scholar

    Han Y J, Zhang J Q, Li Y F, Wang F J, Qu S B, Zhang A X 2016 Acta Phys. Sin. 65 147301Google Scholar

    [24]

    Tang M C, Duan Y L, Wu Z T, Chen X M, Li M, Ziolkowski R W 2019 IEEE Trans. Antennas Propag. 67 1467Google Scholar

    [25]

    Wen Y B, Qin P Y, Wei G M, Ziolkowski R W 2022 IEEE Trans. Antennas Propag. 70 6042Google Scholar

    [26]

    Schlub R, Lu J W, Ohira T 2003 IEEE Trans. Antennas Propag. 51 3033Google Scholar

    [27]

    Schlub R, Thiel D V 2004 IEEE Trans. Antennas Propag. 52 1343Google Scholar

    [28]

    Shan L, Wen G Y 2014 IEEE Trans. Antennas Propag. 62 5565Google Scholar

    [29]

    王身云, 郑淏予, 李阳 2020 物理学报 69 218402Google Scholar

    Wang S Y, Zheng H Y, Li Y 2020 Acta Phys. Sin. 69 218402Google Scholar

    [30]

    Wen G Y 2021 IEEE Open J. Antennas Propag. 2 412Google Scholar

    [31]

    Wang S Y, Jin X R, Liu P, Geyi W 2022 IEEE Antennas Wirel. Propag. Lett. 21 2512Google Scholar

  • [1] 张逸飞, 刘媛, 梅家栋, 王军转, 王肖沐, 施毅. 基于纳米金属阵列天线的石墨烯/硅近红外探测器. 物理学报, 2024, 73(6): 064202. doi: 10.7498/aps.73.20231657
    [2] 苏宇航, 张炼, 陶灿, 王宁, 马平准, 钟莹, 刘海涛. 金属镜面上纳米光学天线阵列自发辐射增强与定向辐射. 物理学报, 2023, 72(7): 078101. doi: 10.7498/aps.72.20222007
    [3] 安腾远, 丁霄, 王秉中. 基于时间反演技术的复杂天线罩辐射波束畸变纠正. 物理学报, 2023, 72(3): 030401. doi: 10.7498/aps.72.20221767
    [4] 刘紫玉, 亓丽梅, 道日娜, 戴林林, 武利勤. 基于VO2的波束可调太赫兹天线. 物理学报, 2022, 71(18): 188703. doi: 10.7498/aps.71.20220817
    [5] 闫志巾, 施卫. 太赫兹GaAs光电导天线阵列辐射特性. 物理学报, 2021, 70(24): 248704. doi: 10.7498/aps.70.20211210
    [6] 杨浩楠, 曹祥玉, 高军, 杨欢欢, 李桐. 基于宽波束磁电偶极子天线的宽角扫描线性相控阵列. 物理学报, 2021, 70(1): 014101. doi: 10.7498/aps.70.20201104
    [7] 蒋基恒, 余世星, 寇娜, 丁召, 张正平. 基于平面相控阵的轨道角动量涡旋电磁波扫描特性. 物理学报, 2021, 70(23): 238401. doi: 10.7498/aps.70.20211119
    [8] 郭成豹, 殷琦琦. 舰船磁场磁单极子阵列法建模技术. 物理学报, 2019, 68(11): 114101. doi: 10.7498/aps.68.20190201
    [9] 唐智灵, 于立娟, 李思敏. 基于高速移动通信的虚拟天线阵列理论研究. 物理学报, 2016, 65(7): 070701. doi: 10.7498/aps.65.070701
    [10] 韩亚娟, 张介秋, 李勇峰, 王甲富, 屈绍波, 张安学. 基于微波表面等离激元的360电扫描多波束天线. 物理学报, 2016, 65(14): 147301. doi: 10.7498/aps.65.147301
    [11] 李文强, 曹祥玉, 高军, 赵一, 杨欢欢, 刘涛. 基于超材料吸波体的低雷达散射截面波导缝隙阵列天线. 物理学报, 2015, 64(9): 094102. doi: 10.7498/aps.64.094102
    [12] 张金玲, 万文钢, 郑占奇, 甘曦, 朱兴宇. X波段微带余割平方扩展波束天线阵赋形优化遗传算法研究. 物理学报, 2015, 64(11): 110504. doi: 10.7498/aps.64.110504
    [13] 于涛, 尹成友, 刘汉. 基于特征基函数的球面共形微带天线阵列分析. 物理学报, 2014, 63(23): 230701. doi: 10.7498/aps.63.230701
    [14] 梁木生, 王秉中, 章志敏, 丁帅, 臧锐. 基于远场时间反演的亚波长天线阵列研究. 物理学报, 2013, 62(5): 058401. doi: 10.7498/aps.62.058401
    [15] 周泽民, 曾新吾, 龚昌超, 赵云, 田章福. 大功率调制气流声源阵列的相干合成实验研究. 物理学报, 2013, 62(13): 134305. doi: 10.7498/aps.62.134305
    [16] 章志敏, 王秉中, 葛广顶. 一种用于时间反演通信的亚波长天线阵列设计. 物理学报, 2012, 61(5): 058402. doi: 10.7498/aps.61.058402
    [17] 张雪芹, 王均宏, 李铮. 微带阵列天线的时域散射特性. 物理学报, 2011, 60(5): 051301. doi: 10.7498/aps.60.051301
    [18] 唐明春, 肖绍球, 高山山, 官剑, 王秉中. 新型电谐振人工异向介质抑制阵列天线单元间互耦. 物理学报, 2010, 59(3): 1851-1856. doi: 10.7498/aps.59.1851
    [19] 李芳昱, 唐孟希. 空间阵列的狭窄波束型引力辐射. 物理学报, 1987, 36(12): 1570-1582. doi: 10.7498/aps.36.1570
    [20] 任朗. 长金属椭球体顶点处线形单极子天线的辐射问题. 物理学报, 1963, 19(3): 169-175. doi: 10.7498/aps.19.169
计量
  • 文章访问数:  4393
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-25
  • 修回日期:  2022-10-15
  • 上网日期:  2022-10-27
  • 刊出日期:  2022-12-24

/

返回文章
返回