搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

酰基辅酶A结合蛋白去折叠动力学的单分子磁镊研究

张宇航 薛振勇 孙皓 张珠伟 陈虎

引用本文:
Citation:

酰基辅酶A结合蛋白去折叠动力学的单分子磁镊研究

张宇航, 薛振勇, 孙皓, 张珠伟, 陈虎

Single molecule magnetic tweezers for unfolding dynamics of Acyl-CoA binding protein

Zhang Yu-Hang, Xue Zhen-Yong, Sun Hao, Zhang Zhu-Wei, Chen Hu
PDF
HTML
导出引用
  • 不同结构类型的蛋白质的力学稳定性和去折叠动力学有显著的差异, 其中全部由α螺旋构成的蛋白质通常在较小的拉力作用下就会发生快速去折叠, 需要能够精准控制皮牛量级拉力的实验手段来进行定量研究. 酰基辅酶A结合蛋白(ACBP)是一种研究全α螺旋结构蛋白折叠/去折叠动力学性质的模型蛋白, 其由86个氨基酸残基形成一种由4个α螺旋组成的螺旋束结构. 本文利用磁镊对ACBP进行了恒定力加载速率的拉伸实验, 得到了不同力加载速率下的去折叠力的分布. 不同数据分析方法都显示ACBP具有超长的去折叠距离. 对比分子动力学模拟拉伸的结果, ACBP的过渡态中整个N端α螺旋和部分的C端α螺旋发生了去折叠转变. 本研究显示单分子拉伸实验与分子动力学模拟相结合是揭示蛋白质构象转变的分子机制的可靠研究方法.
    There are significant differences in mechanical stability and unfolding dynamics among proteins with different structural compositions. Compared with proteins with β-sheets and subjected to shearing forces, proteins that are composed entirely of α-helices often undergo rapid unfolding under low stretching forces, thus requiring quantitative studies by using experimental tools that can precisely control forces on a pico-Newton scale. Magnetic tweezers with intrinsic force-control capability and great stability for long-time continuous measurement are suitable to measure force-induced conformation transitions of protein subjected to low forces of several pico-Newton. Acyl-CoA binding protein (ACBP) is a model protein used to study the folding/unfolding kinetics of complete α-helices protein. It is composed of 86 amino acid residues, forming a helical bundle of four α-helices. When its N- and C-terminal are stretched, the first and last α-helix are subjected to shear force in parallel. Previous biochemical studies showed that ACBP folding and unfolding in a two-state manner. In this paper, we use magnetic tweezers to stretch ACBP from its N- and C-end and obtain the distribution of the unfolding force at different loading rates ranging from 0.25 pN/s to 4 pN/s. The most probable unfolding forces are all less than 10 pN, which confirms that ACBP is not mechanically stable. At a constant loading rate, the unfolding force distribution and the most probable unfolding force as a function of loading rate have well-defined analytical formulas based on Bell’s model. Therefore, the experimental results of unfolding force can be fitted directly to obtain the important kinetic parameter of unfolding distance which is defined as the difference in extension between the native state and the transition state. Data analysis shows that ACBP has an extraordinarily long unfolding distance of 7.8 nm. Steered molecular dynamics simulations of ACBP stretching gives the transition state with N-terminal α-helix fully unfolded and C-terminal α-helix partially unfolded, which is consistent with the long unfolding distance obtained in the experiment on magnetic tweezers. According to the simulation results, the unfolding of α-helices is less cooperative than that of β-sheet structures. This characteristic makes α-helix proteins sensitive to mechanical forces, rendering them suitable as force sensors in cells. This study shows that single-molecule stretching experiment combined with molecular dynamics simulations is a reliable method to reveal the molecular mechanism of protein conformationtransitions under stretching forces.
      通信作者: 陈虎, chenhu@xmu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11874309, 12174322)和111项目(批准号: B16029)资助的课题.
      Corresponding author: Chen Hu, chenhu@xmu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874309, 12174322) and the 111 Project, China (Grant No. B16029).
    [1]

    Ayoub R, Lee Y 2021 Proteins Struct. Funct. Bioinf. 89 648Google Scholar

    [2]

    Lane T J 2023 Nat. Methods 20 170Google Scholar

    [3]

    Kaiser C M, Goldman D H, Chodera J D, Tinoco I, Bustamante C 2011 Science 334 1723Google Scholar

    [4]

    Aubin-Tam M E, Olivares A O, Sauer R T, Baker T A, Lang M J 2011 Cell 145 257Google Scholar

    [5]

    Uddin M S, Al Mamun A, Rahman M A, Behl T, Perveen A, Hafeez A, Bin-Jumah M N, Abdel-Daim M M, Ashraf G M 2020 Curr. Top. Med. Chem. 20 2380Google Scholar

    [6]

    Tan J M M, Wong E S P, Lim K L 2009 Antioxid. Redox Signaling. 11 2119Google Scholar

    [7]

    Kumar T K S, Sivaraman T, Samuel D, Srisailam S, Ganesh G, Hsieh H C, Hung K W, Peng H J, Ho M C, Arunkumar A I, Yu C 2000 J. Chin. Chem. Soc. 47 1009Google Scholar

    [8]

    Fung A, Li P, Godoy-Ruiz R, Sanchez-Ruiz J M, Muñoz V 2008 J. Am. Chem. Soc. 130 7489Google Scholar

    [9]

    Dill K A, MacCallum J L 2012 Science 338 1042Google Scholar

    [10]

    Ma X, Sun H, Hong H, Guo Z, Su H, Chen H 2022 Phys. Rev. E 106 024404Google Scholar

    [11]

    Jagannathan B, Elms P J, Bustamante C, Marqusee S 2012 Proc. Natl. Acad. Sci. 109 17820Google Scholar

    [12]

    Pierse C A, Dudko O K 2017 Phys. Rev. Lett. 118 088101Google Scholar

    [13]

    Piras M, Gerosa C, Fanni D, Cau F, Coni P, Murru R, Denotti G, Orrù G, Scano A, Ledda F, Van Eyken P, Coghe F, Faa G, Castagnola M 2022 Eur. Rev. Med. Pharmacol. Sci. 26 3301Google Scholar

    [14]

    Poulsen F M, Kragelund B B, Osmark P, Neergaard T B, Schiødt J, Kristiansen K, Knudsen J 1999 Nat. Struct. Biol. 6 594Google Scholar

    [15]

    Heidarsson P O, Valpapuram I, Camilloni C, Imparato A, Tiana G, Poulsen F M, Kragelund B B, Cecconi C 2012 J. Am. Chem. Soc. 134 17068Google Scholar

    [16]

    Mandal S S 2020 ACS Omega 5 11271Google Scholar

    [17]

    Neuman K C, Nagy A 2008 Nat. Methods 5 491Google Scholar

    [18]

    Qian H, Chen H, Yan J 2016 Acta Phys. Sin. 65 188706Google Scholar

    [19]

    Chen H, Fu H, Zhu X, Cong P, Nakamura F, Yan J 2011 Biophys. J. 100 517Google Scholar

    [20]

    Miao Y, Feixas F, Eun C, McCammon J A 2016 J. Comput. Chem. 37 1536Google Scholar

    [21]

    Cao Y, Lam C, Wang M, Li H 2006 Angew. Chem. Int. Ed. 45 642Google Scholar

    [22]

    Guo Z, Hong H, Yuan G, Qian H, Li B, Cao Y, Wang W, Wu C X, Chen H 2020 Phys. Rev. Lett. 125 198101Google Scholar

    [23]

    Hong H, Guo Z, Sun H, Yu P, Su H, Ma X, Chen H 2021 Commun. Chem. 4 156Google Scholar

    [24]

    Zhang X, Guo Z, Yu P, Li Q, Zhou X, Chen H 2020 Chin. Phys. B 29 078701Google Scholar

    [25]

    Chen H, Yuan G, Winardhi R S, Yao M, Popa I, Fernandez J M, Yan J 2015 J. Am. Chem. Soc. 137 3540Google Scholar

    [26]

    Yuan G, Le S, Yao M, Qian H, Zhou X, Yan J, Chen H 2017 Angew. Chem. Int. Ed. 56 5490Google Scholar

    [27]

    Cao Y, Li H 2007 Nat. Mater. 6 109Google Scholar

    [28]

    Lu H, Schulten K 2000 Biophys. J. 79 51Google Scholar

    [29]

    Rief M, Gautel M, Oesterhelt F, Fernandez J M, Gaub H E 1997 Science 276 1109Google Scholar

    [30]

    Yao M, Goult B T, Chen H, Cong P, Sheetz M P, Yan J 2014 Sci. Rep. 4 4610Google Scholar

    [31]

    Yao M, Goult B T, Sheetz M P, Yan J 2017 Biophys. J. 112 267aGoogle Scholar

    [32]

    Yao M, Qiu W, Liu R, Efremov A K, Cong P, Seddiki R, Payre M, Lim C T, Ladoux B, Mège R M, Yan J 2014 Nat. Commun. 5 4525Google Scholar

  • 图 1  单分子磁镊实验的结构示意图及典型的拉力-伸长曲线 (a)磁镊拉伸蛋白的结构示意图, 目的蛋白ACBP (PDB ID:2ABD)两端分别连接一个GB1蛋白作为特征信号, 通过顶部的磁球施加竖直向上的拉力; (b) ACBP蛋白构建体的典型的拉力-伸长曲线, 拉力以1 pN/s的恒定加载速率从0.5 pN增加到40 pN并保持在40 pN, 通过伸长的测量能够依次观察到ACBP和2个GB1的去折叠信号

    Fig. 1.  Schematic figure of a single molecule magnetic tweezers experiment and typical force-extension curve. (a) Schematic figure of magnetic tweezers setup to stretch the designed ACBP protein construct. ACBP (PDB ID:2ABD) is sandwiched between two GB1 proteins which provide fingerprint signals to identify correct protein tether. Vertical upward force is applied through the top magnetic bead. (b) Typical force-extension curve of ACBP protein construct. Force increased from 0.5 pN to 40 pN with a constant loading rate of 1 pN/s, and kept at 40 pN. The extension time course shows the unfolding signals of ACBP and GB1 protein domains sequentially.

    图 2  加载速率分别为0.25 pN/s (a), 1 pN/s (b)和4 pN/s (c)下, 去折叠步长和去折叠力的统计结果. 上面板为去折叠步长与拉力的散点图, 黑色实线为根据多肽链的虫链模型得到的去折叠步长的理论曲线; 下面板为去折叠力分布的相对频率(relative frequency, Rel.Fre).

    Fig. 2.  Results of step size and unfolding force at loading rates of 0.25 pN/s (a), 1 pN/s (b) and 4 pN/s (c). Upper panel shows scattered data points of the step size and corresponding unfolding force. Solid black line shows theoretical curve obtained from worm-like chain model of polypeptide. Lower panel shows relative frequency (Rel.Fre) of unfolding forces.

    图 3  不同加载速率下的ACBP去折叠力的分析 (a)—(c) 0.25, 1, 4 pN/s的拉力加载速率下, ACBP去折叠力的分布直方图, 红线和黑线分别对应高斯函数和(1)式的拟合曲线; (d)高斯函数拟合得到的最可几去折叠力与拉力加载速率的依赖关系, 红色虚线给出(2)式的拟合结果.

    Fig. 3.  Analysis of ACBP unfolding force at different loading rates: Distribution histograms of ACBP unfolding force for loading rates of 0.25 pN/s (a), 1 pN/s (b) and 4 pN/s (c), respectively. Red and black curves are fitting curve of Gaussian function and Eq. (1), respectively; (d) most probable unfolding force obtained by fitting of Gaussian function is a function of loading rates. Red dashed line shows fitting curve of Eq. (2).

    图 4  分子动力学模拟中的拉力-伸长曲线以及蛋白质去折叠过程中的构象变化 (a) 3次独立的分子动力学模拟的拉力伸长曲线用三种颜色给出, 黑色图标是三条曲线的平均值. 在开始阶段, 力随着拉伸的进行逐渐增加, 当N-C距离超过9.0 nm后拉力骤降, 以此判断过渡态构象的伸长约为9.0 nm. (b) ACBP的去折叠过程中的快照图, 去折叠开始于N端, 过渡态构象对应结构的N端α螺旋发生了完全去折叠, C端α螺旋发生了部分去折叠

    Fig. 4.  Force-extension curves in molecular dynamics simulations and conformational snapshots during unfolding process. (a) Force-extension curves from three independent molecular dynamics simulations are shown in three different colors. Black symbol and black line show the average extension. At the beginning of stretching, force increases gradually. When extension exceeds 9.0 nm, force drops abruptly, which help to identify the transition state with extension of about 9.0 nm. (b) Snapshots during unfolding process of ACBP. Unfolding begins at N-terminal α-helix. Transition state has completely unfolded N-terminal α-helix and partial unfolded C-terminal α-helix.

  • [1]

    Ayoub R, Lee Y 2021 Proteins Struct. Funct. Bioinf. 89 648Google Scholar

    [2]

    Lane T J 2023 Nat. Methods 20 170Google Scholar

    [3]

    Kaiser C M, Goldman D H, Chodera J D, Tinoco I, Bustamante C 2011 Science 334 1723Google Scholar

    [4]

    Aubin-Tam M E, Olivares A O, Sauer R T, Baker T A, Lang M J 2011 Cell 145 257Google Scholar

    [5]

    Uddin M S, Al Mamun A, Rahman M A, Behl T, Perveen A, Hafeez A, Bin-Jumah M N, Abdel-Daim M M, Ashraf G M 2020 Curr. Top. Med. Chem. 20 2380Google Scholar

    [6]

    Tan J M M, Wong E S P, Lim K L 2009 Antioxid. Redox Signaling. 11 2119Google Scholar

    [7]

    Kumar T K S, Sivaraman T, Samuel D, Srisailam S, Ganesh G, Hsieh H C, Hung K W, Peng H J, Ho M C, Arunkumar A I, Yu C 2000 J. Chin. Chem. Soc. 47 1009Google Scholar

    [8]

    Fung A, Li P, Godoy-Ruiz R, Sanchez-Ruiz J M, Muñoz V 2008 J. Am. Chem. Soc. 130 7489Google Scholar

    [9]

    Dill K A, MacCallum J L 2012 Science 338 1042Google Scholar

    [10]

    Ma X, Sun H, Hong H, Guo Z, Su H, Chen H 2022 Phys. Rev. E 106 024404Google Scholar

    [11]

    Jagannathan B, Elms P J, Bustamante C, Marqusee S 2012 Proc. Natl. Acad. Sci. 109 17820Google Scholar

    [12]

    Pierse C A, Dudko O K 2017 Phys. Rev. Lett. 118 088101Google Scholar

    [13]

    Piras M, Gerosa C, Fanni D, Cau F, Coni P, Murru R, Denotti G, Orrù G, Scano A, Ledda F, Van Eyken P, Coghe F, Faa G, Castagnola M 2022 Eur. Rev. Med. Pharmacol. Sci. 26 3301Google Scholar

    [14]

    Poulsen F M, Kragelund B B, Osmark P, Neergaard T B, Schiødt J, Kristiansen K, Knudsen J 1999 Nat. Struct. Biol. 6 594Google Scholar

    [15]

    Heidarsson P O, Valpapuram I, Camilloni C, Imparato A, Tiana G, Poulsen F M, Kragelund B B, Cecconi C 2012 J. Am. Chem. Soc. 134 17068Google Scholar

    [16]

    Mandal S S 2020 ACS Omega 5 11271Google Scholar

    [17]

    Neuman K C, Nagy A 2008 Nat. Methods 5 491Google Scholar

    [18]

    Qian H, Chen H, Yan J 2016 Acta Phys. Sin. 65 188706Google Scholar

    [19]

    Chen H, Fu H, Zhu X, Cong P, Nakamura F, Yan J 2011 Biophys. J. 100 517Google Scholar

    [20]

    Miao Y, Feixas F, Eun C, McCammon J A 2016 J. Comput. Chem. 37 1536Google Scholar

    [21]

    Cao Y, Lam C, Wang M, Li H 2006 Angew. Chem. Int. Ed. 45 642Google Scholar

    [22]

    Guo Z, Hong H, Yuan G, Qian H, Li B, Cao Y, Wang W, Wu C X, Chen H 2020 Phys. Rev. Lett. 125 198101Google Scholar

    [23]

    Hong H, Guo Z, Sun H, Yu P, Su H, Ma X, Chen H 2021 Commun. Chem. 4 156Google Scholar

    [24]

    Zhang X, Guo Z, Yu P, Li Q, Zhou X, Chen H 2020 Chin. Phys. B 29 078701Google Scholar

    [25]

    Chen H, Yuan G, Winardhi R S, Yao M, Popa I, Fernandez J M, Yan J 2015 J. Am. Chem. Soc. 137 3540Google Scholar

    [26]

    Yuan G, Le S, Yao M, Qian H, Zhou X, Yan J, Chen H 2017 Angew. Chem. Int. Ed. 56 5490Google Scholar

    [27]

    Cao Y, Li H 2007 Nat. Mater. 6 109Google Scholar

    [28]

    Lu H, Schulten K 2000 Biophys. J. 79 51Google Scholar

    [29]

    Rief M, Gautel M, Oesterhelt F, Fernandez J M, Gaub H E 1997 Science 276 1109Google Scholar

    [30]

    Yao M, Goult B T, Chen H, Cong P, Sheetz M P, Yan J 2014 Sci. Rep. 4 4610Google Scholar

    [31]

    Yao M, Goult B T, Sheetz M P, Yan J 2017 Biophys. J. 112 267aGoogle Scholar

    [32]

    Yao M, Qiu W, Liu R, Efremov A K, Cong P, Seddiki R, Payre M, Lim C T, Ladoux B, Mège R M, Yan J 2014 Nat. Commun. 5 4525Google Scholar

  • [1] 刘旺旺, 张克学, 王军, 夏国栋. 过渡区内纳米颗粒的曳力特性模拟研究. 物理学报, 2024, 73(7): 075101. doi: 10.7498/aps.73.20231861
    [2] 张嘉晖. 蛋白质计算中的机器学习. 物理学报, 2024, 73(6): 069301. doi: 10.7498/aps.73.20231618
    [3] 陈光临, 张志勇. 使用中间层受监督的自编码器探索蛋白质的构象空间. 物理学报, 2023, 72(24): 248705. doi: 10.7498/aps.72.20231060
    [4] 李俊炜, 贾维敏, 魏雅璇, 吕沙沙, 王金涛, 李正操. 钼掺杂γ-U (100)表面上H2分子解离、H原子和O原子扩散的第一性原理研究. 物理学报, 2023, 72(14): 146401. doi: 10.7498/aps.72.20230033
    [5] 辛勇, 包宏伟, 孙志鹏, 张吉斌, 刘仕超, 郭子萱, 王浩煜, 马飞, 李垣明. U1–xThxO2混合燃料力学性能的分子动力学模拟. 物理学报, 2021, 70(12): 122801. doi: 10.7498/aps.70.20202239
    [6] 李兴欣, 李四平. 退火温度调控多层折叠石墨烯力学性能的分子动力学模拟. 物理学报, 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [7] 滕翠娟, 陆越, 马建兵, 李明, 陆颖, 徐春华. 用单分子技术研究Sso7d与DNA的相互作用. 物理学报, 2018, 67(14): 148201. doi: 10.7498/aps.67.20180630
    [8] 陈泽, 马建兵, 黄星榞, 贾棋, 徐春华, 张慧东, 陆颖. 单分子技术研究T7解旋酶的解旋与换链. 物理学报, 2018, 67(11): 118201. doi: 10.7498/aps.67.20180501
    [9] 孙启响, 闫冰. CH3I2+的二体、三体解离过程的理论研究. 物理学报, 2017, 66(9): 093101. doi: 10.7498/aps.66.093101
    [10] 赵振业, 徐春华, 李菁华, 黄星榞, 马建兵, 陆颖. 用全内反射瞬逝场照明磁镊研究Bloom解旋G-四联体. 物理学报, 2017, 66(18): 188701. doi: 10.7498/aps.66.188701
    [11] 钱辉, 陈虎, 严洁. 软物质实验方法前沿:单分子操控技术. 物理学报, 2016, 65(18): 188706. doi: 10.7498/aps.65.188706
    [12] 曹博智, 林瑜, 王艳伟, 杨光参. 抗生物素蛋白与DNA相互作用的单分子研究. 物理学报, 2016, 65(14): 140701. doi: 10.7498/aps.65.140701
    [13] 张宇微, 颜燕, 农大官, 徐春华, 李明. 磁镊结合DNA发夹的方法在RecA蛋白介导的同源重组机制研究中的潜在应用. 物理学报, 2016, 65(21): 218702. doi: 10.7498/aps.65.218702
    [14] 王启东, 彭增辉, 刘永刚, 姚丽双, 任淦, 宣丽. 基于混合液晶分子动力学模拟比较液晶分子旋转黏度大小. 物理学报, 2015, 64(12): 126102. doi: 10.7498/aps.64.126102
    [15] 王爽, 郑海子, 赵振业, 陆越, 徐春华. 全内反射瞬逝场照明高精度磁镊及其在DNA解旋酶研究中的应用. 物理学报, 2013, 62(16): 168703. doi: 10.7498/aps.62.168703
    [16] 冉诗勇. 谐振势阱中的布朗运动——磁镊实验与模拟. 物理学报, 2012, 61(17): 170503. doi: 10.7498/aps.61.170503
    [17] 汪俊, 张宝玲, 周宇璐, 侯氢. 金属钨中氦行为的分子动力学模拟. 物理学报, 2011, 60(10): 106601. doi: 10.7498/aps.60.106601
    [18] 权伟龙, 李红轩, 吉利, 赵飞, 杜雯, 周惠娣, 陈建敏. 类金刚石薄膜力学特性的分子动力学模拟. 物理学报, 2010, 59(8): 5687-5691. doi: 10.7498/aps.59.5687
    [19] 谢 芳, 朱亚波, 张兆慧, 张 林. 碳纳米管振荡的分子动力学模拟. 物理学报, 2008, 57(9): 5833-5837. doi: 10.7498/aps.57.5833
    [20] 王昶清, 贾 瑜, 马丙现, 王松有, 秦 臻, 王 飞, 武乐可, 李新建. 不同温度下Si(001)表面各种亚稳态结构的分子动力学模拟. 物理学报, 2005, 54(9): 4313-4318. doi: 10.7498/aps.54.4313
计量
  • 文章访问数:  4550
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-04
  • 修回日期:  2023-05-09
  • 上网日期:  2023-05-25
  • 刊出日期:  2023-08-05

/

返回文章
返回