搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多纵模激光器体制下直接多普勒测风技术的实现与仿真

高丰佳 高飞 赵婷婷 汪丽 李仕春 闫庆 华灯鑫

引用本文:
Citation:

多纵模激光器体制下直接多普勒测风技术的实现与仿真

高丰佳, 高飞, 赵婷婷, 汪丽, 李仕春, 闫庆, 华灯鑫

Technical realization and simulation of direct Doppler wind measurement using multi-longitudinal mode laser

Gao Fengjia, Gao Fei, Zhao Tingting, Li Wang, Li Shichun, Yan Qing, Dengxin Hua
PDF
导出引用
  • 考虑到单纵模激光器作为多普勒测风激光雷达的激励光源需要复杂的种子注入技术和高精度的稳频锁频技术,本文提出了以自由运转的多纵模激光器作为激励光源的直接多普勒测风激光雷达,以降低激励光源的实现难度和复杂性。针对典型Nd: YAG脉冲激光器,研究了不同激光辐射线宽、光学谐振腔长和中心波长条件下多纵模激光激励的大气弹性散射回波光谱的分布模式。为了综合利用大气风场导致的多纵模激光中每个纵模所激励大气弹性散射回波光谱的多普勒频移,利用具有周期性透过率曲线且四个输出通道相位各相差π/2的可调谐四通道马赫-泽德干涉仪实现对多纵模大气弹性散射回波光谱多普勒频移的高精度鉴别。在此基础上,构建了多纵模激光器体制下直接多普勒测风技术大气风场反演的数学模型。仿真结果表明,所提出的多纵模直接多普勒测风激光雷达能够实现对大气风场信息的高精度测量,并且激光中心波长越大,激光光学谐振腔长越短,则系统测风范围越大,测风误差越小。
    Single-longitudinal-mode (SLM) direct Doppler wind lidar (DDWL) needs the complex techniques of the seed injection as well as high precision frequency stabilization and frequency locking to provide an output of the stable frequency SLM laser, resulting in the complicated construction of the DDWL. To reduce the technical difficulty and structural complexity of the excitation light source of DDWL, a multi-longitudinal mode (MLM) DDWL is proposed. The MLM DDWL directly employs the free-running MLM laser as the excitation light source and uses the quadri-channel Mach-Zender interferometer (QMZI) with four periodic outputs as the spectral discriminator.
    Firstly, atmospheric elastic echo scattering spectra excited by the MLM laser are analyzed for the typical Nd: YAG pulsed laser, which presents a coincidence distribution with the longitudinal modes of the MLM laser. The peaks of atmospheric elastic echo scattering spectra excited by the MLM laser overlap with each other. The overlap degree is influenced by the laser radiation linewidth, laser optical resonator length, laser center wavelength, and scattering particle type. In addition, atmospheric elastic echo scattering spectra excited by each longitudinal mode of the MLM laser has the Doppler frequency shift introduced by atmospheric wind. Therefore, it is necessary to select an optical interferometer with the periodic transmittance curve as the spectral discriminator of MLM DDWL.
    Subsequently, a QMZI is designed as the spectral discriminator to achieve high-precision measurement for the Doppler frequency shift of atmospheric elastic echo scattering spectra excited by the MLM laser. The designed QMZI has four periodic output channels and the phase difference of adjacent channels is π/2. The mathematical model of the transmittance function of the QMZI is established. The effective transmittance of the QMZI for atmospheric elastic echo scattering spectra excited by the MLM laser is analyzed based on the partial coherence theory of quasi-monochromatic light interference and the polarization effect of light. On this basis, the data inversion algorithm of MLM DDWL is constructed.
    Finally, the simulation experiments of wind measurement are carried out. The QMZI simulation model is built by the non-sequential mode of Zemax optical simulation software. The atmospheric elastic echo scattering spectra excited by the MLM laser are configured by the SPCD files of Zemax optical simulation software under different theoretical wind speeds (from -50 m/s to 50 m/s), laser optical resonator lengths (L=30 mm, L=300 mm), and laser center wavelengths (λ=1064 nm, λ=532 nm, λ=355 nm). The SPCD files are fed to the QMZI simulation model as input signals. At the same time, the ray tracing based on the principle of Monte Carlo simulation is performed for the input signals, and the output signals of the four channels of the QMZI simulation model are recorded to retrieve the atmospheric wind information. The simulation results show that the proposed MLM DDWL can achieve high-precision measurement of atmospheric wind information. With the laser optical resonator length of 300 mm and different laser center wavelengths (λ=1064 nm, λ=532 nm, λ=355 nm), the maximum detectable wind speed of MLM DDWL is about 50 m/s, 30 m/s, and 20 m/s, and the wind measurement errors can be controlled within 2.5 m/s, 3.0 m/s, and 4.0 m/s, respectively. With the laser center wavelengths of 532 nm and laser optical resonator lengths (L=30 mm, L=300 mm), the maximum detectable wind speed of MLM DDWL is about 50 m/s and 30 m/s, and the wind measurement errors can be controlled within 2.0 m/s and 3.0 m/s, respectively. Therefore, the larger the laser center wavelength and the smaller the laser optical resonator length, the larger the wind measurement range and the smaller the wind measurement error.
  • [1]

    . Kumar D, Premachandran B 2019 Int. J. Therm. Sci. 138 263

    [2]

    . Liu G Q, Perrie W 2013 Geophys. Res. Lett. 40 3150

    [3]

    . Gardiner B, Berry P, Moulia B 2016 Plant Sci. 245 94

    [4]

    . Yu L J, Zhong S Y, Bian X D, Heilman W E 2018 Int. J. Climatol. 39 1684

    [5]

    . Ma F M, Chen Y, Yang Z H, Zhou D F, Li X F, Chen C L, Feng L T, Yu C 2019 LOP 56 180003(in Chinese) [马福民,陈涌,杨泽后,周鼎富,李晓锋,陈春利,冯力天,余臣 2019 激光与光电子学进展 56 180003]

    [6]

    . Reitebuch O, Lemmerz Ch, Nagel E, Paffrath U, Durand Y, Endemann M, Fabre F, Chaloupy M 2009 J ATMOS OCEAN TECH 26 2501

    [7]

    . Paffrath U, Lemmerz Ch, Reitebuch O, Oliver, Witschas B, Nikolaus I, Freudenthaler V 2009 J ATMOS OCEAN TECH 26 2516

    [8]

    . Chu Y F, Liu D, Wang Z Z, Wu D C, Deng Q, Li L, Zhuang P, Wang Y J 2020 Acta Photon. Sin. 37 580(in Chinese) [储玉飞,刘东,王珍珠,吴德成,邓迁,李路,庄鹏,王英俭 2020 量子电子学报 37 580]

    [9]

    . Jiang S, Sun D S, Han Y L, Han F, Zhou A R, Zheng J 2019 Curr. Opt. Photon. 3 466

    [10]

    . Zhang Y P, Yuan J L, Wu Y B, Dong J J, Xia H Y 2023 Phys. Rev. Fluids. 8 L022701

    [11]

    . Zhang Y P, Wu Y B, Dong J J, Xia H Y 2022 IEEE Photon. J. 14 6047706

    [12]

    . Liu Z L, Barlow J F, Chan P W, Fung J C H, Li Y G, Ren C, Mark H W L, Ng E 2019 Remote Sens. 11 2522

    [13]

    . Zhang Y F, Feng Y T, Fu D, Chang C G, Li J, Bai Q L, Hu B J 2022 Acta Phys. Sin. 71 084201(in Chinese) [张亚飞,冯玉涛,傅頔,畅晨光,李娟,白清兰,胡炳樑 2022物理学报 71 084201]

    [14]

    . Vrancken P, Herbst J 2022 Remote Sens. 14 3356

    [15]

    . Kliebisch O, Uittenbosch H, Thurn J, Mahnke P 2022 Opt. Express 30 5540

    [16]

    . Wang L, Gao F, Wang J, Yan Q, Yan W X, Wang M, Hua D X 2019 Opt. Laser Eng. 121 61

    [17]

    . Hill C 2018 Remote Sens. 10 466

    [18]

    . Shen F H, Wang B X, Shi W J, Zhuang P, Zhu C Y, Xie C B 2018 Opt. Commun. 412 7

    [19]

    . Pan Y S, Yan Z A, Guo W J, Xu Q C, Hu X 2016 Chin. J. Lasers 40 153(in Chinese)[潘艺升,闫召爱,郭文杰,徐轻尘,胡雄 2016 激光技术 40 153]

    [20]

    . Wu C T, Chen F, Dai T Y, Ju Y L 2015 J. Mod. Opt. 62 1535

    [21]

    . Zhang M F, Yang T X, Ge C F 2022 Infrared Laser Eng. 51 20210435(in Chinese)[张明富,杨天新,葛春风 2022 红外与激光工程 51 20210435]

    [22]

    . Ge Y, Hu Y H, Shu R, Hong G L 2015 Acta Phys. Sin. 64 020707(in Chinese)[葛烨,胡以华,舒嵘,洪光烈 2015 物理学报 64 020707]

    [23]

    . Bruneau D, Blouzon F, Spatazza J, Montmessin F, Pelon J, Faure B 2013 Appl. Opt. 52 4941

    [24]

    . Gao F, Nan H S, Huang B, Wang L, Li S C, Wang Y F, Liu J J, Yan Q, Song Y H, Hua D X 2018 Acta Phys. Sin. 67 030701(in Chinese)[高飞,南恒帅,黄波,汪丽,李仕春,王玉峰,刘晶晶,闫庆,宋跃辉,华灯鑫 2018 物理学报 67 030701]

    [25]

    . Gao F, Nan H S, Zhang R, Zhu Q S, Chen T, Wang L, Chen H, Hua D X, Stanic S 2019 JQSRT 234 10

    [26]

    . Mao Y L, Qiu H W, Xu J, Deng P Z, Gan F X 2001 Acta Optica Sinica 21 1264(in Chinese)[毛艳丽,邱宏伟,徐军,邓佩珍,干福熹 2001 光学学报 21 1264]

    [27]

    . Korb C L, Gentry B M, Weng C Y 1992 Appl. Opt. 31 4202

    [28]

    . Thompson B J, Wolf E 1957 J. Opt. Soc. Am. 47 895

  • [1] 马平, 田径, 田得阳, 张宁, 吴明兴, 唐璞. 应用于超高速流场电子密度分布测量的七通道微波干涉仪测量系统. 物理学报, doi: 10.7498/aps.73.20240656
    [2] 李竣, 薛正跃, 刘笑海, 王晶晶, 王贵师, 刘锟, 高晓明, 谈图. 激光外差光谱仪模拟风场探测. 物理学报, doi: 10.7498/aps.71.20211252
    [3] 张亚飞, 冯玉涛, 傅頔, 畅晨光, 李娟, 白清兰, 胡炳樑. 基于分段边缘拟合的测风多普勒差分干涉仪成像热漂移监测方法. 物理学报, doi: 10.7498/aps.71.20212086
    [4] 高飞, 南恒帅, 黄波, 汪丽, 李仕春, 王玉峰, 刘晶晶, 闫庆, 宋跃辉, 华灯鑫. 紫外域多纵模高光谱分辨率激光雷达探测气溶胶的技术实现和系统仿真. 物理学报, doi: 10.7498/aps.67.20172036
    [5] 唐远河, 崔进, 郜海阳, 屈欧阳, 段晓东, 李存霞, 刘丽娜. 地基气辉成像干涉仪探测高层大气风场的定标研究. 物理学报, doi: 10.7498/aps.66.130601
    [6] 张日伟, 孙学金, 严卫, 赵剑, 刘磊, 李岩, 张传亮, 周俊浩. 星载激光多普勒测风雷达鉴频系统仿真(Ⅱ):基于Fabry-Perot标准具的Rayleigh通道大气风速反演研究. 物理学报, doi: 10.7498/aps.63.140703
    [7] 姜祝辉, 周晓中, 游小宝, 易欣, 黄为权. 合成孔径雷达反演海面风场变分模型分析. 物理学报, doi: 10.7498/aps.63.148401
    [8] 谭林秋, 华灯鑫, 汪丽, 高飞, 狄慧鸽. Mach-Zehnder干涉仪条纹成像多普勒激光雷达风速反演及视场展宽技术. 物理学报, doi: 10.7498/aps.63.224205
    [9] 张日伟, 孙学金, 严卫, 刘磊, 李岩, 赵剑, 颜万祥, 李浩然. 星载激光多普勒测风雷达鉴频系统仿真(I):基于Fizeau干涉仪的Mie通道大气风速反演研究. 物理学报, doi: 10.7498/aps.63.140702
    [10] 艾未华, 严卫, 赵现斌, 刘文俊, 马烁. C波段机载合成孔径雷达海面风场反演新方法. 物理学报, doi: 10.7498/aps.62.068401
    [11] 沈法华, 孙东松, 刘成林, 仇成群, 舒志峰. 基于单Fabry-Perot标准具的双频率多普勒激光雷达数据反演技术. 物理学报, doi: 10.7498/aps.62.220702
    [12] 张宣妮, 张淳民, 艾晶晶. 四分束风成像偏振干涉仪信噪比的研究. 物理学报, doi: 10.7498/aps.62.030701
    [13] 代海山, 张淳民, 穆廷魁. 宽场、消色差、温度补偿风成像干涉仪中次级条纹研究. 物理学报, doi: 10.7498/aps.61.224201
    [14] 沈法华, 舒志峰, 孙东松, 王忠纯, 薛向辉, 陈廷娣, 窦贤康. Rayleigh散射Doppler激光雷达风场反演方法改进. 物理学报, doi: 10.7498/aps.61.030702
    [15] 姜祝辉, 黄思训, 何然, 周晨腾. 合成孔径雷达资料反演海面风场的正则化方法研究. 物理学报, doi: 10.7498/aps.60.068401
    [16] 朱化春, 张淳民. 偏振风成像干涉仪多波长探测理论研究. 物理学报, doi: 10.7498/aps.60.074211
    [17] 沈法华, 舒志峰, 孙东松, 王忠纯, 薛向辉, 陈廷娣, 窦贤康. 瑞利散射多普勒激光雷达风场反演方法. 物理学报, doi: 10.7498/aps.60.060704
    [18] 王金婵, 张淳民, 赵葆常, 刘宁. 静态偏振风成像干涉仪中光在四面角锥棱镜中的传播规律研究. 物理学报, doi: 10.7498/aps.59.1625
    [19] 阮 锴, 张淳民, 赵葆常. 高层大气风场探测改型大光程差Sagnac干涉仪全视场角光程差与横向剪切量的精确计算. 物理学报, doi: 10.7498/aps.57.5435
    [20] 唐远河, 张淳民, 刘汉臣, 陈光德, 贺 健. 基于镀膜四面角锥棱镜技术的上层大气风场探测研究. 物理学报, doi: 10.7498/aps.54.4065
计量
  • 文章访问数:  59
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2024-09-13

/

返回文章
返回