搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多纵模激光器体制下直接多普勒测风技术的实现与仿真

高丰佳 高飞 赵婷婷 汪丽 李仕春 闫庆 华灯鑫

引用本文:
Citation:

多纵模激光器体制下直接多普勒测风技术的实现与仿真

高丰佳, 高飞, 赵婷婷, 汪丽, 李仕春, 闫庆, 华灯鑫
cstr: 32037.14.aps.73.20240949

Implementation and simulation of direct Doppler wind measurement technology under regime of multi-longitudinal mode laser

Gao Feng-Jia, Gao Fei, Zhao Ting-Ting, Wang Li, Li Shi-Chun, Yan Qing, Hua Deng-Xin
cstr: 32037.14.aps.73.20240949
PDF
HTML
导出引用
  • 考虑到单纵模激光器作为多普勒测风激光雷达的激励光源需要复杂的种子注入技术和高精度的稳频锁频技术, 本文提出了以自由运转的多纵模激光器作为激励光源的直接多普勒测风激光雷达, 以降低激励光源的实现难度和复杂性. 针对典型Nd:YAG脉冲激光器, 研究了不同激光辐射线宽、光学谐振腔长和中心波长条件下多纵模激光激励的大气弹性散射回波光谱的分布模式. 为了综合利用大气风场导致的多纵模激光中每个纵模所激励大气弹性散射回波光谱的多普勒频移, 利用具有周期性透过率曲线且四个输出通道相位各相差π/2的可调谐四通道马赫-曾德尔干涉仪, 实现对多纵模大气弹性散射回波光谱多普勒频移的高精度鉴别. 在此基础上, 构建了多纵模激光器体制下直接多普勒测风技术大气风场反演的数学模型. 仿真结果表明, 所提出的多纵模直接多普勒测风激光雷达能够实现对大气风场信息的高精度测量, 并且激光中心波长越大, 激光光学谐振腔长越短, 系统测风范围越大, 测风误差越小.
    Single-longitudinal-mode (SLM) direct Doppler wind lidar (DDWL) requires complex techniques of the seed injection, high precision frequency stability, and frequency locking to provide an output of the stable frequency SLM laser, resulting in a complex structure of DDWL. To reduce the technical difficulty and structural complexity of the excitation light source of DDWL, a multi-longitudinal mode (MLM) DDWL is proposed. In the MLM DDWL, a free-running MLM laser is directly used as an excitation light source and quadri-channel Mach-Zender interferometer (QMZI) with four periodic outputs is adopted as a spectral discriminator.Firstly, for the typical Nd:YAG pulsed laser, the scattering spectra of atmospheric elastic echo excited by the MLM laser are analyzed which are coincident with the longitudinal modes of the MLM laser. The peaks of atmospheric elastic echo scattering spectra excited by the MLM laser overlap with each other. The overlapping degree is affected by the laser radiation linewidth, laser optical resonator length, laser center wavelength, and type of scattering particles. In addition, the scattering spectra of atmospheric elastic echo excited by each longitudinal mode of the MLM laser have the Doppler frequency shift introduced by atmospheric wind. Therefore, it is necessary to select an optical interferometer with the periodic transmittance curve as the spectral discriminator of MLM DDWL.Subsequently, a QMZI is designed as the spectral discriminator to achieve high-precision measurement for the Doppler frequency shift of scattering spectra of atmospheric elastic echo excited by the MLM laser. The designed QMZI has four periodic output channels and the phase difference between adjacent channels is π/2. The mathematical model of the transmittance function of the QMZI is established. The effective transmittance of the QMZI for atmospheric elastic echo scattering spectrum excited by the MLM laser is analyzed based on the partial coherence theory of quasi-monochromatic light interference and the polarization effect of light. On this basis, the data inversion algorithm of MLM DDWL is constructed.Finally, the simulation experiments of wind measurement are carried out. The QMZI simulation model is built by the non-sequential mode of Zemax optical simulation software. The atmospheric elastic echo scattering spectra excited by the MLM laser are configured by the SPCD files of Zemax optical simulation software under different theoretical wind speeds ranging from –50 to 50 m/s, laser optical resonator lengths (L = 30 mm and 300 mm), and laser center wavelengths (λ = 1064, 532, and 355 nm). The SPCD files are fed to the QMZI simulation model as input signals. At the same time, the ray tracing on input signal is performed based on the principle of Monte Carlo simulation s, and the output signals of the four channels of the QMZI simulation model are recorded to retrieve the atmospheric wind information. The simulation results show that the proposed MLM DDWL can achieve high-precision measurement of atmospheric wind information. With the laser optical resonator length of 300 mm and laser center wavelengths λ = 1064 nm, λ = 532 nm, λ = 355 nm, the maximum detectable wind speeds of MLM DDWL are about 50, 30, and 20 m/s, and the wind measurement errors can be controlled within 2.5, 3.0, and 4.0 m/s, respectively. When the center wavelength of each laser is 532 nm, and the lengths of laser optical resonator are 30 mm and 300 mm, then the maximum detectable wind speeds of MLM DDWL are about 50 m/s and 30 m/s, and the wind measurement errors can be controlled within 2.0 m/s and 3.0 m/s, respectively. Therefore, the longer the laser center wavelength and the shorter the laser optical resonator length, the larger the wind measurement range will be and the smaller the wind measurement error.
      通信作者: 高飞, gaofei@xaut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 42175149, 41775035, 42275148)、中国-中东欧国家高校联合教育项目(批准号: 2023330, 2022232, 2021120)、陕西省教育厅科研计划项目(批准号: 23JY055)、国家市场监管重点实验室(计量光学及应用)开放课题(批准号: SXJL2023Z01KF)和西安理工大学博士创新基金(批准号: 102-252072304)资助的课题.
      Corresponding author: Gao Fei, gaofei@xaut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 42175149, 41775035, 42275148), the China-CEEC Joint Higher Education Project (Grant Nos. 2023330, 2022232, 2021120), the Scientific Research Program Funded by Shaanxi Provincial Education Department, China (Grant No. 23JY055), the Open Project of Key Laboratory of Metrological Optics and Application for State Market Regulation, China (Grant No. SXJL2023Z01KF), and the Ph.D. Innovation Fund Project of Xi’an University of Technology, China (Grant No. 102-252072304).
    [1]

    Kumar D, Premachandran B 2019 Int. J. Therm. Sci. 138 263Google Scholar

    [2]

    Liu G Q, Perrie W 2013 Geophys. Res. Lett. 40 3150Google Scholar

    [3]

    Gardiner B, Berry P, Moulia B 2016 Plant Sci. 245 94Google Scholar

    [4]

    Yu L J, Zhong S Y, Bian X D, Heilman W E 2018 Int. J. Climatol. 39 1684

    [5]

    马福民, 陈涌, 杨泽后, 周鼎富, 李晓锋, 陈春利, 冯力天, 余臣 2019 激光与光电子学进展 56 180003Google Scholar

    Ma F M, Chen Y, Yang Z H, Zhou D F, Li X F, Chen C L, Feng L T, Yu C 2019 Laser Optoelectron. Prog. 56 180003Google Scholar

    [6]

    Reitebuch O, Lemmerz Ch, Nagel E, Paffrath U, Durand Y, Endemann M, Fabre F, Chaloupy M 2009 J. Atmos. Oceanic Technol. 26 2501Google Scholar

    [7]

    Paffrath U, Lemmerz Ch, Reitebuch O, Oliver, Witschas B, Nikolaus I, Freudenthaler V 2009 J. Atmos. Oceanic Technol. 26 2516Google Scholar

    [8]

    储玉飞, 刘东, 王珍珠, 吴德成, 邓迁, 李路, 庄鹏, 王英俭 2020 量子电子学报 37 580

    Chu Y F, Liu D, Wang Z Z, Wu D C, Deng Q, Li L, Zhuang P, Wang Y J 2020 Chin. J. Quantum Electron. 37 580

    [9]

    Jiang S, Sun D S, Han Y L, Han F, Zhou A R, Zheng J 2019 Curr. Opt. Photonics 3 466

    [10]

    Zhang Y P, Yuan J L, Wu Y B, Dong J J, Xia H Y 2023 Phys. Rev. Fluids 8 L022701Google Scholar

    [11]

    Zhang Y P, Wu Y B, Dong J J, Xia H Y 2022 IEEE Photonics J. 14 6047706

    [12]

    Liu Z L, Barlow J F, Chan P W, Fung J C H, Li Y G, Ren C, Mark H W L, Ng E 2019 Remote Sens. 11 2522Google Scholar

    [13]

    张亚飞, 冯玉涛, 傅頔, 畅晨光, 李娟, 白清兰, 胡炳樑 2022 物理学报 71 084201Google Scholar

    Zhang Y F, Feng Y T, Fu D, Chang C G, Li J, Bai Q L, Hu B J 2022 Acta Phys. Sin. 71 084201Google Scholar

    [14]

    Vrancken P, Herbst J 2022 Remote Sens. 14 3356Google Scholar

    [15]

    Kliebisch O, Uittenbosch H, Thurn J, Mahnke P 2022 Opt. Express 30 5540Google Scholar

    [16]

    Wang L, Gao F, Wang J, Yan Q, Yan W X, Wang M, Hua D X 2019 Opt. Laser Eng. 121 61Google Scholar

    [17]

    Hill C 2018 Remote Sens. 10 466Google Scholar

    [18]

    Shen F H, Wang B X, Shi W J, Zhuang P, Zhu C Y, Xie C B 2018 Opt. Commun. 412 7Google Scholar

    [19]

    潘艺升, 闫召爱, 郭文杰, 徐轻尘, 胡雄 2016 激光技术 40 153

    Pan Y S, Yan Z A, Guo W J, Xu Q C, Hu X 2016 Laser Technol. 40 153

    [20]

    Wu C T, Chen F, Dai T Y, Ju Y L 2015 J. Mod. Opt. 62 1535Google Scholar

    [21]

    张明富, 杨天新, 葛春风 2022 红外与激光工程 51 20210435Google Scholar

    Zhang M F, Yang T X, Ge C F 2022 Infrared Laser Eng. 51 20210435Google Scholar

    [22]

    葛烨, 胡以华, 舒嵘, 洪光烈 2015 物理学报 64 020707Google Scholar

    Ge Y, Hu Y H, Shu R, Hong G L 2015 Acta Phys. Sin. 64 020707Google Scholar

    [23]

    Bruneau D, Blouzon F, Spatazza J, Montmessin F, Pelon J, Faure B 2013 Appl. Opt. 52 4941Google Scholar

    [24]

    高飞, 南恒帅, 黄波, 汪丽, 李仕春, 王玉峰, 刘晶晶, 闫庆, 宋跃辉, 华灯鑫 2018 物理学报 67 030701Google Scholar

    Gao F, Nan H S, Huang B, Wang L, Li S C, Wang Y F, Liu J J, Yan Q, Song Y H, Hua D X 2018 Acta Phys. Sin. 67 030701Google Scholar

    [25]

    Gao F, Nan H S, Zhang R, Zhu Q S, Chen T, Wang L, Chen H, Hua D X, Stanic S 2019 J. Quant. Spectrosc. Radiat. Transfer 234 10Google Scholar

    [26]

    毛艳丽, 邱宏伟, 徐军, 邓佩珍, 干福熹 2001 光学学报 21 1264

    Mao Y L, Qiu H W, Xu J, Deng P Z, Gan F X 2001 Acta Opt. Sin. 21 1264

    [27]

    Korb C L, Gentry B M, Weng C Y 1992 Appl. Opt. 31 4202Google Scholar

    [28]

    Thompson B J, Wolf E 1957 J. Opt. Soc. Am. 47 895Google Scholar

  • 图 1  多纵模激光激励的大气弹性散射回波光谱示意图 (a) 激光辐射线宽为30 GHz, 激光光学谐振腔长为30 mm; (b) 激光辐射线宽为60 GHz, 激光光学谐振腔长为30 mm; (c) 激光辐射线宽为30 GHz, 激光光学谐振腔长为300 mm; (d) 激光辐射线宽为60 GHz, 激光光学谐振腔长为300 mm

    Fig. 1.  Diagram of atmospheric elastic scattering echo spectra excited by multi-longitudinal mode laser: (a) Laser radiation linewidth is 30 GHz, laser optical resonator length is 30 mm; (b) laser radiation linewidth is 60 GHz, laser optical resonator length is 30 mm; (c) laser radiation linewidth is 30 GHz, laser optical resonator length is 300 mm; (d) laser radiation linewidth is 60 GHz, laser optical resonator length is 300 mm.

    图 2  不同激光中心波长时, 交叠系数随激光光学谐振腔长的变化曲线 (a) 多纵模气溶胶米散射回波光谱的交叠系数; (b) 多纵模大气分子瑞利散射回波光谱的交叠系数

    Fig. 2.  Change curve of overlap coefficient with laser optical resonator length under different laser center wavelengths: (a) Overlap coefficient of multi-longitudinal mode aerosol Mie scattering echo spectra; (b) overlap coefficient of multi-longitudinal mode molecular Rayleigh scattering echo spectra

    图 3  直接单边缘检测技术鉴别多纵模大气弹性散射回波光谱多普勒频移的原理图

    Fig. 3.  Principle diagram of direct single-edge detection technology for measuring the Doppler shift of atmospheric elastic scattering echo spetra excited by multi-longitudinal mode laser.

    图 4  基于可调谐四通道马赫-曾德尔干涉仪的多纵模直接多普勒测风激光雷达系统图. BS: 光束分离器; E: 准直扩束器; M: 反射镜; F: 光纤; CL准直透镜; QWP: 四分之一波片; DS: 纳米位移系统; GP: 格兰棱镜; L: 汇聚透镜; D: 光电探测器件

    Fig. 4.  System diagram of multi-longitudinal mode direct Doppler wind lidar based on quadri-channel Mach-Zehnder interferometer. BS: beam splitter; E: expander; M: mirror; F: fiber; CL: collimating lens; QWP: quarter-wave plate; DS: displacement system; GP: Glan prism; L: convergent lens; D: photoelectric detector.

    图 5  四通道马赫-曾德尔干涉仪鉴别多纵模大气弹性散射回波光谱多普勒频移的原理图

    Fig. 5.  Principle diagram of quadri-channel Mach-Zehnder interferometer for measuring Doppler shift of atmospheric elastic scattering echo spetra excited by multi-longitudinal mode laser.

    图 6  四通道马赫-曾德尔干涉仪鉴别多纵模大气弹性散射回波光谱多普勒频移的输出信号 (a) QMZI通道1输出信号; (b) QMZI通道2输出信号; (c) QMZI通道3输出信号; (d) QMZI通道4输出信号

    Fig. 6.  Output signals of quadri-channel Mach-Zehnder interferometer for measuring Doppler shift of atmospheric elastic scattering echo spetra excited by multi-longitudinal mode laser: (a) Output signals of channel 1; (b) output signals of channel 2; (c) output signals of channel 3; (d) output signals of channel 4.

    图 7  激光光学谐振腔长为30 mm时, 不同激光中心波长下QMZI有效透过率随风速变化的仿真曲线 (a) 激光中心波长为1064 nm; (b) 激光中心波长为532 nm; (c) 激光中心波长为355 nm

    Fig. 7.  Simulation curve of effective transmittance of QMZI with wind speed at different laser center wavelengths when the laser optical resonator length is 30 mm: (a) The laser center wavelength is 1064 nm; (b) the laser center wavelength is 532 nm; (c) the laser center wavelength is 355 nm.

    图 8  激光光学谐振腔长为300 mm时, 不同激光中心波长下QMZI有效透过率随风速变化的仿真曲线 (a) 激光中心波长为1064 nm; (b) 激光中心波长为532 nm; (c) 激光中心波长为355 nm

    Fig. 8.  Simulation curve of effective transmittance of QMZI with wind speed at different laser center wavelengths when the laser optical resonator length is 300 mm: (a) The laser center wavelength is 1064 nm; (b) the laser center wavelength is 532 nm; (c) the laser center wavelength is 355 nm.

    图 9  激光光学谐振腔长为30 mm时, 不同激光中心波长下多纵模直接多普勒测风激光雷达系统的测风误差随风速变化的仿真曲线 (a) 激光中心波长为1064 nm; (b) 激光中心波长为532 nm; (c) 激光中心波长为355 nm

    Fig. 9.  Simulation curve of wind measurement error of multi-longitudinal mode direct Doppler wind lidar with wind speed at different laser center wavelengths when the laser optical resonator length is 30 mm: (a) The laser center wavelength is 1064 nm; (b) the laser center wavelength is 532 nm; (c) the laser center wavelength is 355 nm.

    图 10  激光光学谐振腔长为300 mm时, 不同激光中心波长下多纵模直接多普勒测风激光雷达系统的测风误差随风速变化的仿真曲线 (a) 激光中心波长为1064 nm; (b) 激光中心波长为532 nm; (c) 激光中心波长为355 nm

    Fig. 10.  Simulation curve of wind measurement error of multi-longitudinal mode direct Doppler wind lidar with wind speed at different laser center wavelengths when the laser optical resonator length is 300 mm: (a) The laser center wavelength is 1064 nm; (b) the laser center wavelength is 532 nm; (c) the laser center wavelength is 355 nm.

    表 1  多纵模激光器体制下直接多普勒测风激光雷达关键参数.

    Table 1.  Key parameters of multi-longitudinal mode direct Doppler wind lidar.

    参数 参数
    激光中心波长/nm 1064, 532, 355 理论风速/(m·s–1) –50—50 (间隔1 m·s–1)
    激光辐射线宽/GHz 30 大气温度/K 300
    激光光学谐振腔长/mm 30, 300 气溶胶后向散射比 2
    激光纵模个数 7, 61 QMZI自由光谱范围/GHz 5.0, 0.5
    激光纵模间隔/GHz 5.0, 0.5
    下载: 导出CSV
  • [1]

    Kumar D, Premachandran B 2019 Int. J. Therm. Sci. 138 263Google Scholar

    [2]

    Liu G Q, Perrie W 2013 Geophys. Res. Lett. 40 3150Google Scholar

    [3]

    Gardiner B, Berry P, Moulia B 2016 Plant Sci. 245 94Google Scholar

    [4]

    Yu L J, Zhong S Y, Bian X D, Heilman W E 2018 Int. J. Climatol. 39 1684

    [5]

    马福民, 陈涌, 杨泽后, 周鼎富, 李晓锋, 陈春利, 冯力天, 余臣 2019 激光与光电子学进展 56 180003Google Scholar

    Ma F M, Chen Y, Yang Z H, Zhou D F, Li X F, Chen C L, Feng L T, Yu C 2019 Laser Optoelectron. Prog. 56 180003Google Scholar

    [6]

    Reitebuch O, Lemmerz Ch, Nagel E, Paffrath U, Durand Y, Endemann M, Fabre F, Chaloupy M 2009 J. Atmos. Oceanic Technol. 26 2501Google Scholar

    [7]

    Paffrath U, Lemmerz Ch, Reitebuch O, Oliver, Witschas B, Nikolaus I, Freudenthaler V 2009 J. Atmos. Oceanic Technol. 26 2516Google Scholar

    [8]

    储玉飞, 刘东, 王珍珠, 吴德成, 邓迁, 李路, 庄鹏, 王英俭 2020 量子电子学报 37 580

    Chu Y F, Liu D, Wang Z Z, Wu D C, Deng Q, Li L, Zhuang P, Wang Y J 2020 Chin. J. Quantum Electron. 37 580

    [9]

    Jiang S, Sun D S, Han Y L, Han F, Zhou A R, Zheng J 2019 Curr. Opt. Photonics 3 466

    [10]

    Zhang Y P, Yuan J L, Wu Y B, Dong J J, Xia H Y 2023 Phys. Rev. Fluids 8 L022701Google Scholar

    [11]

    Zhang Y P, Wu Y B, Dong J J, Xia H Y 2022 IEEE Photonics J. 14 6047706

    [12]

    Liu Z L, Barlow J F, Chan P W, Fung J C H, Li Y G, Ren C, Mark H W L, Ng E 2019 Remote Sens. 11 2522Google Scholar

    [13]

    张亚飞, 冯玉涛, 傅頔, 畅晨光, 李娟, 白清兰, 胡炳樑 2022 物理学报 71 084201Google Scholar

    Zhang Y F, Feng Y T, Fu D, Chang C G, Li J, Bai Q L, Hu B J 2022 Acta Phys. Sin. 71 084201Google Scholar

    [14]

    Vrancken P, Herbst J 2022 Remote Sens. 14 3356Google Scholar

    [15]

    Kliebisch O, Uittenbosch H, Thurn J, Mahnke P 2022 Opt. Express 30 5540Google Scholar

    [16]

    Wang L, Gao F, Wang J, Yan Q, Yan W X, Wang M, Hua D X 2019 Opt. Laser Eng. 121 61Google Scholar

    [17]

    Hill C 2018 Remote Sens. 10 466Google Scholar

    [18]

    Shen F H, Wang B X, Shi W J, Zhuang P, Zhu C Y, Xie C B 2018 Opt. Commun. 412 7Google Scholar

    [19]

    潘艺升, 闫召爱, 郭文杰, 徐轻尘, 胡雄 2016 激光技术 40 153

    Pan Y S, Yan Z A, Guo W J, Xu Q C, Hu X 2016 Laser Technol. 40 153

    [20]

    Wu C T, Chen F, Dai T Y, Ju Y L 2015 J. Mod. Opt. 62 1535Google Scholar

    [21]

    张明富, 杨天新, 葛春风 2022 红外与激光工程 51 20210435Google Scholar

    Zhang M F, Yang T X, Ge C F 2022 Infrared Laser Eng. 51 20210435Google Scholar

    [22]

    葛烨, 胡以华, 舒嵘, 洪光烈 2015 物理学报 64 020707Google Scholar

    Ge Y, Hu Y H, Shu R, Hong G L 2015 Acta Phys. Sin. 64 020707Google Scholar

    [23]

    Bruneau D, Blouzon F, Spatazza J, Montmessin F, Pelon J, Faure B 2013 Appl. Opt. 52 4941Google Scholar

    [24]

    高飞, 南恒帅, 黄波, 汪丽, 李仕春, 王玉峰, 刘晶晶, 闫庆, 宋跃辉, 华灯鑫 2018 物理学报 67 030701Google Scholar

    Gao F, Nan H S, Huang B, Wang L, Li S C, Wang Y F, Liu J J, Yan Q, Song Y H, Hua D X 2018 Acta Phys. Sin. 67 030701Google Scholar

    [25]

    Gao F, Nan H S, Zhang R, Zhu Q S, Chen T, Wang L, Chen H, Hua D X, Stanic S 2019 J. Quant. Spectrosc. Radiat. Transfer 234 10Google Scholar

    [26]

    毛艳丽, 邱宏伟, 徐军, 邓佩珍, 干福熹 2001 光学学报 21 1264

    Mao Y L, Qiu H W, Xu J, Deng P Z, Gan F X 2001 Acta Opt. Sin. 21 1264

    [27]

    Korb C L, Gentry B M, Weng C Y 1992 Appl. Opt. 31 4202Google Scholar

    [28]

    Thompson B J, Wolf E 1957 J. Opt. Soc. Am. 47 895Google Scholar

  • [1] 马平, 田径, 田得阳, 张宁, 吴明兴, 唐璞. 应用于超高速流场电子密度分布测量的七通道微波干涉仪测量系统. 物理学报, 2024, 73(17): 172401. doi: 10.7498/aps.73.20240656
    [2] 李竣, 薛正跃, 刘笑海, 王晶晶, 王贵师, 刘锟, 高晓明, 谈图. 激光外差光谱仪模拟风场探测. 物理学报, 2022, 71(7): 074204. doi: 10.7498/aps.71.20211252
    [3] 张亚飞, 冯玉涛, 傅頔, 畅晨光, 李娟, 白清兰, 胡炳樑. 基于分段边缘拟合的测风多普勒差分干涉仪成像热漂移监测方法. 物理学报, 2022, 71(8): 084201. doi: 10.7498/aps.71.20212086
    [4] 高飞, 南恒帅, 黄波, 汪丽, 李仕春, 王玉峰, 刘晶晶, 闫庆, 宋跃辉, 华灯鑫. 紫外域多纵模高光谱分辨率激光雷达探测气溶胶的技术实现和系统仿真. 物理学报, 2018, 67(3): 030701. doi: 10.7498/aps.67.20172036
    [5] 唐远河, 崔进, 郜海阳, 屈欧阳, 段晓东, 李存霞, 刘丽娜. 地基气辉成像干涉仪探测高层大气风场的定标研究. 物理学报, 2017, 66(13): 130601. doi: 10.7498/aps.66.130601
    [6] 张日伟, 孙学金, 严卫, 赵剑, 刘磊, 李岩, 张传亮, 周俊浩. 星载激光多普勒测风雷达鉴频系统仿真(Ⅱ):基于Fabry-Perot标准具的Rayleigh通道大气风速反演研究. 物理学报, 2014, 63(14): 140703. doi: 10.7498/aps.63.140703
    [7] 姜祝辉, 周晓中, 游小宝, 易欣, 黄为权. 合成孔径雷达反演海面风场变分模型分析. 物理学报, 2014, 63(14): 148401. doi: 10.7498/aps.63.148401
    [8] 谭林秋, 华灯鑫, 汪丽, 高飞, 狄慧鸽. Mach-Zehnder干涉仪条纹成像多普勒激光雷达风速反演及视场展宽技术. 物理学报, 2014, 63(22): 224205. doi: 10.7498/aps.63.224205
    [9] 张日伟, 孙学金, 严卫, 刘磊, 李岩, 赵剑, 颜万祥, 李浩然. 星载激光多普勒测风雷达鉴频系统仿真(I):基于Fizeau干涉仪的Mie通道大气风速反演研究. 物理学报, 2014, 63(14): 140702. doi: 10.7498/aps.63.140702
    [10] 艾未华, 严卫, 赵现斌, 刘文俊, 马烁. C波段机载合成孔径雷达海面风场反演新方法. 物理学报, 2013, 62(6): 068401. doi: 10.7498/aps.62.068401
    [11] 沈法华, 孙东松, 刘成林, 仇成群, 舒志峰. 基于单Fabry-Perot标准具的双频率多普勒激光雷达数据反演技术. 物理学报, 2013, 62(22): 220702. doi: 10.7498/aps.62.220702
    [12] 张宣妮, 张淳民, 艾晶晶. 四分束风成像偏振干涉仪信噪比的研究. 物理学报, 2013, 62(3): 030701. doi: 10.7498/aps.62.030701
    [13] 代海山, 张淳民, 穆廷魁. 宽场、消色差、温度补偿风成像干涉仪中次级条纹研究. 物理学报, 2012, 61(22): 224201. doi: 10.7498/aps.61.224201
    [14] 沈法华, 舒志峰, 孙东松, 王忠纯, 薛向辉, 陈廷娣, 窦贤康. Rayleigh散射Doppler激光雷达风场反演方法改进. 物理学报, 2012, 61(3): 030702. doi: 10.7498/aps.61.030702
    [15] 姜祝辉, 黄思训, 何然, 周晨腾. 合成孔径雷达资料反演海面风场的正则化方法研究. 物理学报, 2011, 60(6): 068401. doi: 10.7498/aps.60.068401
    [16] 韩奎, 王子煜, 沈晓鹏, 吴琼华, 童星, 唐刚, 吴玉喜. 基于光子晶体自准直和带隙效应的马赫-曾德尔干涉仪设计. 物理学报, 2011, 60(4): 044212. doi: 10.7498/aps.60.044212
    [17] 朱化春, 张淳民. 偏振风成像干涉仪多波长探测理论研究. 物理学报, 2011, 60(7): 074211. doi: 10.7498/aps.60.074211
    [18] 沈法华, 舒志峰, 孙东松, 王忠纯, 薛向辉, 陈廷娣, 窦贤康. 瑞利散射多普勒激光雷达风场反演方法. 物理学报, 2011, 60(6): 060704. doi: 10.7498/aps.60.060704
    [19] 王金婵, 张淳民, 赵葆常, 刘宁. 静态偏振风成像干涉仪中光在四面角锥棱镜中的传播规律研究. 物理学报, 2010, 59(3): 1625-1631. doi: 10.7498/aps.59.1625
    [20] 唐远河, 张淳民, 刘汉臣, 陈光德, 贺 健. 基于镀膜四面角锥棱镜技术的上层大气风场探测研究. 物理学报, 2005, 54(9): 4065-4071. doi: 10.7498/aps.54.4065
计量
  • 文章访问数:  978
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-09
  • 修回日期:  2024-08-13
  • 上网日期:  2024-09-13
  • 刊出日期:  2024-10-20

/

返回文章
返回