-
为了探索Nb元素对AlCrFeNi合金的相调控机制,本研究将实验与第一性原理计算相结合,系统探究了不同Nb含量对AlCrFeNiNbx高熵合金微观组织,力学性能及耐磨性的影响。结果表明,AlCrFeNiNb0.4高熵合金具有良好的力学性能与最佳的耐磨性。Nb的掺杂改变了AlCrFeNi合金的磨损机制,并提高了合金的耐磨性。这归因于Nb对AlCrFeNi合金的相调控作用:一方面诱导高硬度的Laves相析出,另一方面固溶于合金的BCC相及B2相,并显著地提升两相的力学性能。此外,Nb的掺杂细化了合金的微观组织,促使其相界面密度提升,从而综合提升了合金的硬度,屈服强度以及耐磨性。第一性原理计算表明Nb原子改变了AlCrFeNi合金中BCC相与B2相的电子结构,从而提升了两相的稳定性,印证了Nb对两相的的固溶强化作用。而Nb原子与两相中大部分原子会形成较强的反键,进一步解释了Nb掺杂后合金的微观组织中大量Laves相生成的本质原因。
-
关键词:
- AlCrFeNiNbx高熵合金 /
- 第一性原理 /
- 力学性能 /
- 磨损行为
AlCoCrFeNi high-entropy alloys have consistently attracted research attention due to their outstanding strength-to-ductility ratio. However, the substantial content of expensive cobalt in these alloys has somewhat limited their engineering applications. Consequently, there is an urgent need to design and develop high-performance, low-cost cobalt-free high-entropy alloys. AlCrFeNi alloys exhibit microstructures and properties similar to AlCoCrFeNi alloys. Simultaneously, the absence of Co significantly reduces costs and markedly improves casting performance. These alloys represent a potential structural material for harsh environments, demonstrating promising engineering applications. In order to explore the phase modulation mechanism of Nb element on AlCrFeNi alloy, this study combines experiments with first principles calculations to systematically investigate the effects of Nb on microstructure, mechanical properties and wear resistance of AlCrFeNi alloy. The results show that the AlCrFeNiNb0.4 high-entropy alloy has the best mechanical properties and wear resistance.The doping of Nb changes the wear mechanism of the AlCrFeNi alloy and improves the wear resistance of the alloy. This is attributed to the phase modulation effect of Nb on AlCrFeNi alloy: on the one hand, it induces the precipitation of Laves phase with high hardness, and on the other hand, it solidly dissolves in the BCC and B2 phases of the alloy, and significantlyimproves the mechanical properties of the two phases. In addition, Nb doping refines the microstructure of the AlCrFeNi alloy, which leads to an increase in the phase interface density, thus enhancing the hardness, yield strength and wear resistance of the alloy. First principles calculations show that the Nb atoms change the electronic structure of the BCC and B2 phases in the AlCrFeNi alloy, which enhances the stability of the two phases, confirming the solid solution strengthening of the two phases by Nb. The Nb atoms form strong antibonds with most of the atoms in the two phases, which further explains the nature of the generation of a large number of Laves phases in the microstructure of the alloy after Nb doping.-
Keywords:
- AlCrFeNiNbx high-entropy alloys /
- first principles /
- mechanical properties /
- wear behavior
-
[1] Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Chang S Y 2004 Adv. Eng. Mater. 6 299
[2] Braeckman B R, Boydens F, Hidalgo H, Dutheil P, Jullien M, Thomann A L, Depla D 2015 Thin Solid Films 580 71
[3] Tsai M H, Yeh J W 2014 Mater. Res. Lett. 2 107
[4] Tsai K Y, Tsai M H, Ye J W 2013 Acta Mater. 61 4887
[5] Dong Y, Lu Y, Kong J, Zhang J, Li T 2013 J. Alloys Compd. 573 96
[6] Ding Q, Zhang Y, Chen X, Fu X, Chen D, Chen S, Yu Q 2019 Nature 574 223
[7] Yang Y F, Hu F, Xia T, Li R H, Bai J Y, Zhu J Q, Zhang G F 2024 J. Alloys Compd. 986 177691
[8] Hua Z, Guo L, Zhang Y, Dai Y, Zhang D, Mei F, Lin J 2025 Intermetallics 180 108711
[9] Tian T, Zhang X, Xue Y, Huang H, Jiang Q, Tang J 2024 Mol. Catal. 569 114571
[10] Liu J, Li Z, Lin D, Tang Z, Song X, He P, Song Y 2024 J. Mater. Sci. Technol. 189 211
[11] Sonar T, Ivanov M, Trofimov E, Tingaev A, Suleymanova I 2024 Mater. Sci. Energy Technol. 7 35
[12] Zhao Q, Ren Z, Zhao P, Yoshida K 2025 Phys. Lett. B 860 139196
[13] Gutierrez R E, Matanovic I, Polak M P, Morgan D, Schamiloglu E 2025 J. Electron Spectrosc. Relat. Phenom. 278 147512
[14] Doan D Q, Fang T H, Chen T H 2021 Sci. Rep. 11 13680
[15] Zhang Y, Zuo T T, Tang Z, Gao M C, Dahmen K A, Liaw P K, Lu Z P 2014 Prog. Mater. Sci. 61 1
[16] Jiang Z, Chen W, Xia Z, Xiong W, Fu Z 2019 Intermetallics 108 45
[17] Zhang J, Yang J, Liu T, Tian D, Liu H, Yang G, Shoji T 2024 J. Mater. Res. Technol. 33 6688
[18] Ma Q, Zhao W, Li X, Gao W, Zhang H, Ma X, Xiao G 2024 Mater. Charact. 215 114146
[19] Wang Z, Li Y, Dong H, Wang Y 2025 Tribol. Int. 202 110379
[20] Munitz A, Salhov S, Guttmann G, Derimow N, Nahmany M 2019 Mater. Sci. Eng. A 742 1
[21] Segall M D, Lindan P J, Probert M A, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717
[22] Wu T, Yang C, Yu L, Zheng X, Zhang L, Jiang Y, Luan B 2024 Appl. Surf. Sci. 677 161032
[23] Li Z, Gain A K, Cui Y, Zhang L 2025 Wear 205934 524
[24] Xie Y, Jiang W, Xu K, Wen X, Huang B 2025 Mater. Today Commun. 111662 35
[25] Kang H, Yang X, Sun X, Wang C, Xiao P 2025 J. Alloys Compd. 1010 177873
[26] Liu S, Zhan Y, Wu J, Chen X, Ye H 2016 Comput. Mater. Sci. 117 1
[27] Chen X Q, Niu H, Li D, Li Y 2011 Intermetallics 19 1275
[28] Sun L, Huang Y, Zhao K, Chen Z, Shang X, Xu W, Peng J 2025 Comput. Condens. Matter 43 e01027
[29] Pugh S F 1954 Philos. Mag. 45 823
[30] Hu W C, Liu Y, Li D J, Li K, Jin H L, Xu Y X, Zeng X Q 2014 Philos. Mag. 94 3945
计量
- 文章访问数: 21
- PDF下载量: 0
- 被引次数: 0