搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相调控视角下AlCrFeNiNbx高熵合金的强化机制及磨损行为

黄潘毅 刘郅澄 周永强 彭文屹 瞿玉海 章爱生 邓晓华 张龙鹤 周诗逸 周杰

引用本文:
Citation:

相调控视角下AlCrFeNiNbx高熵合金的强化机制及磨损行为

黄潘毅, 刘郅澄, 周永强, 彭文屹, 瞿玉海, 章爱生, 邓晓华, 张龙鹤, 周诗逸, 周杰

Strengthening mechanism and wear behavior of AlCrFeNiNbx high-entropy alloys from the perspective of phase modulation

HUANG Panyi, LIU Zhicheng, ZHOU Yongqiang, PENG Wenyi, QU Yuhai, ZHANG Aisheng, DENG Xiaohua, ZHANG Longhe, ZHOU Shiyi, ZHOU Jie
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 为了探索Nb元素对AlCrFeNi合金的相调控机制, 本研究将实验与第一性原理计算相结合, 系统探究了不同Nb含量对AlCrFeNiNbx高熵合金微观组织、力学性能及耐磨性的影响. 结果表明, AlCrFeNiNb0.4高熵合金具有良好的力学性能与最佳的耐磨性. Nb的掺杂改变了AlCrFeNi合金的磨损机制, 并提高了合金的耐磨性. 这归因于Nb对AlCrFeNi合金的相调控作用: 一方面诱导高硬度的Laves相析出, 另一方面固溶于合金的BCC相及B2相, 并显著地提升两相的力学性能. 此外, Nb的掺杂细化了合金的微观组织, 促使其相界面密度提升, 从而综合提升了合金的硬度, 屈服强度以及耐磨性. 第一性原理计算表明Nb原子改变了AlCrFeNi合金中BCC相与B2相的电子结构, 从而提升了两相的稳定性, 印证了Nb对两相的的固溶强化作用. 而Nb原子与两相中大部分原子会形成较强的反键, 进一步解释了Nb掺杂后合金的微观组织中大量Laves相生成的本质原因.
    AlCoCrFeNi high-entropy alloys have consistently attracted attention due to their outstanding strength-to-ductility ratio. However, the substantial content of expensive cobalt in these alloys has somewhat limited their engineering applications. Consequently, there is an urgent need to design and develop high-performance, low-cost cobalt-free high-entropy alloys. AlCrFeNi alloys exhibit microstructures and properties similar to AlCoCrFeNi alloys. Simultaneously, the absence of Co significantly reduces costs and markedly improves casting performance. These alloys represent a potential structural material for harsh environments, demonstrating promising engineering applications. In order to explore the phase modulation mechanism of Nb element on AlCrFeNi alloy, this study combines experiments with first principles calculations to systematically investigate the effects of Nb on the microstructure, mechanical properties and wear resistance of AlCrFeNi alloy. The research results show that the AlCrFeNiNb0.4 high-entropy alloy has the best mechanical properties and wear resistance.The doping of Nb changes the wear mechanism of the AlCrFeNi alloy and improves the wear resistance of the alloy. This is attributed to the phase modulation effect of Nb on AlCrFeNi alloy. On the one hand, it induces the precipitation of Laves phase, which has high hardness, and on the other hand, it solidly dissolves in the BCC and B2 phases of the alloy, significantly improving the mechanical properties of the two phases. In addition, Nb doping refines the microstructure of the AlCrFeNi alloy, which leads to an increase in the phase interface density, thus enhancing the hardness, yield strength and wear resistance of the alloy. First principles calculations show that the Nb atoms change the electronic structures of the BCC and B2 phases in the AlCrFeNi alloy, thereby enhancing the stability of the two phases and confirming the solid solution strengthening effect of Nb on the two phases. The Nb atoms form strong antibonds with most of the atoms in the two phases, which further explains the nature of the generation of a large number of Laves phases in the microstructure of the alloy after Nb doping.
  • 图 1  晶体模型与等效位点 (a) Al2Cr8Fe8Ni2; (b) Al2Cr7Fe8 Ni2Nb; (c) Al8Cr2Fe2Ni8;(d) Al8Cr2FeNi8Nb

    Fig. 1.  Crystal models and equivalents for points: (a) Al2Cr8Fe8Ni2; (b) Al2Cr7Fe8Ni2Nb; (c) Al8Cr2Fe2Ni8; (d) Al8Cr2FeNi8Nb.

    图 2  AlCrFeNiNbx高熵合金磨损性能测试 (a) 摩擦系数; (b) 磨损率

    Fig. 2.  Wear performance test of AlCrFeNiNbx HEAs: (a) Friction coefficient; (b) wear rate.

    图 3  AlCrFeNiNbx磨损SEM及EDS图 (a) x = 0; (b) x = 0.1; (c) x = 0.2; (d) x = 0.3; (e) x = 0.4

    Fig. 3.  SEM and EDS plots of AlCrFeNiNbx HEA wear: (a) x = 0; (b) x = 0.1; (c) x = 0.2; (d) x = 0.3; (e) x = 0.4.

    图 4  AlCrFeNiNbx高熵合金的XRD图谱 (a) 10°—90°; (b) 44°—45°

    Fig. 4.  XRD patterns of AlCrFeNiNbx HEAs: (a) 10°–90°; (b) 44°–45°

    图 5  AlCrFeNiNbx高熵合金微观组织BSE图及EDS图 (a) x = 0; (b) x = 0.1; (c) x = 0.2; (d) x = 0.3; (e) x = 0.4.

    Fig. 5.  BSEM and EDS plots of microstructure of AlCrFeNiNbx HEAs: (a) x = 0; (b) x = 0.1; (c) x = 0.2; (d) x = 0.3; (e) x = 0.4

    图 6  AlCrFeNiNbx高熵合金的(a)显微维氏硬度与(b)室温压缩曲线

    Fig. 6.  (a) Microhardness and (b) room temperature compression curves of AlCrFeNiNbx HEAs.

    图 7  掺杂前后BCC相与B2相的(a)载荷-位移曲线和(b)纳米硬度以及弹性模量

    Fig. 7.  (a) Load-displacement curves and (b) nanohardness and Young's modulus of BCC phase and B2 phase before and after doping.

    图 8  体系态密度图 (a) Al2Cr8Fe8Ni2; (b) Al2Cr7Fe8Ni2Nb; (c) Al8Cr2Fe2Ni8; (d) Al8Cr2FeNi8Nb

    Fig. 8.  Density of state of systems: (a) Al2Cr8Fe8Ni2; (b) Al2Cr7Fe8Ni2Nb; (c) Al8Cr2Fe2Ni8; (d) Al8Cr2FeNi8Nb.

    图 9  体系差分电荷密度图 (a) Al2Cr8Fe8Ni2; (b) Al2Cr7Fe8Ni2Nb; (c) Al8Cr2Fe2Ni8; (d) Al8Cr2FeNi8Nb

    Fig. 9.  Electron density difference of systems: (a) Al2Cr8Fe8Ni2; (b) Al2Cr7Fe8Ni2Nb; (c) Al8Cr2Fe2Ni8; (d) Al8Cr2FeNi8Nb.

    表 1  各相成分值

    Table 1.  Component values at each phase.

    AlloysPhasesAl/%Cr/%Fe/%Ni/%Nb/%
    Nb0BCC10.4144.0237.577.990
    B237.969.0313.1539.860
    Nb0.1BCC10.7746.2335.736.700.57
    B232.7013.1316.9735.861.34
    Laves9.3322.8331.6010.8625.37
    Nb0.2BCC9.1346.3536.036.232.26
    B232.2713.8516.6035.921.36
    Laves10.4123.4329.3911.0525.72
    Nb0.3BCC10.3042.9736.257.043.45
    B237.3410.1413.2637.811.45
    Laves10.7323.3629.4010.8425.67
    Nb0.4BCC10.7939.4935.147.367.23
    B234.3212.4415.0036.801.47
    Laves11.4523.5327.5811.2026.24
    下载: 导出CSV

    表 2  体系的总能量、缺陷形成能、形成热与结合能

    Table 2.  Total energy, defect formation energy, heat of formation and binding energy of the systems.

    System Site Ef H E Etotal
    Al2Cr8Fe8Ni2 –0.11667 –3.62827 –29079.07198
    AlCr8Fe8Ni2Nb Al site 1.17184 –0.05808 –3.84808 –30623.59838
    Al2Cr7Fe8Ni2Nb Cr site –0.00317 –0.11683 –3.90007 –28335.21599
    Al2Cr8Fe7Ni2Nb Fe site 1.10657 –0.06134 –3.85692 –29872.04588
    Al2Cr8Fe8NiNb Ni site 0.76522 –0.07841 –3.92992 –29358.95247
    Al8Cr2Fe2Ni8 –0.34288 –3.47834 –18426.86037
    Al7Cr2Fe2Ni8Nb Al site 0.51441 –0.31716 –3.73102 –19972.04421
    Al8CrFe2Ni8Nb Cr site –0.67442 –0.37660 –3.78370 –17683.67563
    Al8Cr2FeNi8Nb Fe site –1.45347 –0.41555 –3.83498 –19222.39432
    Al8Cr2Fe2Ni7Nb Ni site –1.26742 –0.40625 –3.88161 –18708.77351
    下载: 导出CSV

    表 3  Nb掺杂前后BCC相键的布居数

    Table 3.  Bond populations in the BCC phase before and after Nb doping.

    System Bond Population Length
    Al2Cr8Fe8Ni2 Ni—Ni 0.01 3.54777
    Fe—Ni 0.11 3.24825
    Fe—Fe 0.07 3.34922
    Cr—Ni –0.03 3.48801
    Cr—Fe –0.05 3.15932
    Cr—Cr –0.37 3.28039
    Al—Ni 0.11 3.42543
    Al—Fe 0.11 3.20017
    Al—Cr 0.08 3.05610
    Al—Al 0.00 4.80639
    Al2Cr7Fe8Ni2Nb Ni—Ni –0.02 3.73872
    Fe—Ni 0.10 3.32775
    Fe—Fe 0.07 3.34938
    Cr—Ni –0.09 3.65638
    Cr—Fe –0.05 3.13931
    Cr—Cr –0.39 3.12486
    Al—Ni 0.13 3.40228
    Al—Fe 0.11 3.23175
    Al—Cr 0.10 2.99913
    Al—Al 0.00 4.85985
    Ni—Nb 0.57 2.58120
    Fe—Nb –0.03 3.32742
    Cr—Nb –0.31 3.75318
    Al—Nb –0.14 3.66437
    下载: 导出CSV

    表 4  Nb掺杂前后B2相键的布居数

    Table 4.  Bond populations in the BCC phase before and after Nb doping.

    System Bond Population Length
    Al8Cr2Fe2Ni8 Al—Al 0.01 3.20558
    Al—Cr –0.44 3.07520
    Al—Fe 0.24 2.47738
    Al—Ni 0.27 2.70429
    Cr—Fe –1.00 2.44941
    Cr—Ni –0.40 2.50288
    Fe—Ni –0.15 3.07799
    Ni—Ni –0.20 3.21284
    Al8Cr2FeNi8Nb Al—Al –0.02 3.23276
    Al—Cr –0.26 3.24161
    Al—Fe 0.21 2.84415
    Al—Nb 0.00 2.65091
    Al—Ni 0.24 2.87858
    Cr—Fe –0.73 2.46354
    Cr—Nb –2.36 2.45989
    Cr—Ni –0.19 2.74444
    Fe—Ni –0.14 3.22725
    Ni—Nb –0.33 3.26054
    下载: 导出CSV

    表 5  各体系的弹性刚度常数

    Table 5.  Elastic stiffness constants of systems.

    Al2Cr8Fe8Ni2 Al2Cr7Fe8Ni2Nb Al8Cr2Fe2Ni8 Al8Cr2FeNi8Nb
    C11 128.29975 736.29805 270.3648 127.11465
    C22 177.42665 215.33585 691.93215 203.93235
    C33 267.0162 –375.11635 250.2832 1766.9252
    C12 178.20038 343.45855 93.53145 74.19628
    C23 160.14022 –33.38788 81.9077 256.06083
    C13 177.82828 304.61232 97.42585 345.99403
    C44 –92.7819 167.42425 31.8253 59.76855
    C55 –22.91365 –568.51245 53.94125 71.5073
    C66 81.31915 333.01795 64.64615 31.13195
    下载: 导出CSV

    表 6  各体系的弹性柔顺常数

    Table 6.  Elastic flexibility constants of systems.

    Al2Cr8Fe8Ni2 Al2Cr7Fe8Ni2Nb Al8Cr2Fe2Ni8 Al8Cr2FeNi8Nb
    S11 –0.0156972 0.0004691 0.00475 0.0242321
    S22 0.0010798 0.0025236 0.0015446 0.0065644
    S33 0.005798 0.0088133 0.0054491 0.0021923
    S12 0.0131561 0.0029681 –0.0004152 –0.0019679
    S23 –0.0082161 –0.0063358 –0.0003173 –0.0007382
    S13 0.0026282 –0.0003899 –0.002034 –0.0055097
    S44 0.0106177 –0.0063815 0.0665176 0.0392295
    S55 0.0225751 0.006832 0.0391124 0.0261333
    S66 0.0115169 –0.0040258 0.0181006 0.038512
    下载: 导出CSV

    表 7  各体系的弹性常数

    Table 7.  Elastic constants of systems.

    SystemsB/GPaG/GPaE/GPaHV/GPa
    Al2Cr8Fe8Ni2168.320107.811266.52915.356
    Al2Cr7Fe8Ni2Nb216.860137.470340.46817.906
    Al8Cr2Fe2Ni8178.19163.838171.0845.431
    Al8Cr2FeNi8Nb221.89179.373212.7516.325
    下载: 导出CSV
  • [1]

    Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Chang S Y 2004 Adv. Eng. Mater. 6 299Google Scholar

    [2]

    Braeckman B R, Boydens F, Hidalgo H, Dutheil P, Jullien M, Thomann A L, Depla D 2015 Thin Solid Films 580 71Google Scholar

    [3]

    Tsai M H, Yeh J W 2014 Mater. Res. Lett. 2 107Google Scholar

    [4]

    Tsai K Y, Tsai M H, Ye J W 2013 Acta Mater. 61 4887Google Scholar

    [5]

    Dong Y, Lu Y P, Kong J R, Zhang J J, Li T J 2013 J. Alloys Compd. 573 96Google Scholar

    [6]

    Ding Q Q, Zhang Y, Chen X, Fu X Q, Chen D K, Chen S J, Gu L, Wei F, Bei H B, Gao Y F, Wen M R, Li J X, Zhang Z, Zhu T, Ritchie R O, Yu Q 2019 Nature 574 223Google Scholar

    [7]

    Yang Y F, Hu F, Xia T, Li R H, Bai J Y, Zhu J Q, Zhang G F 2024 J. Alloys Compd. 986 177691

    [8]

    Hua Z L, Guo L, Zhang Y, Dai Y L, Zhang D C, Mei F S, Lin J G 2025 Intermetallics 180 108711Google Scholar

    [9]

    Tian T, Zhang X L, Xue Y Z, Huang H B, Jiang Q Q, Tang J G 2024 Mol. Catal. 569 114571

    [10]

    Liu J H, Li Z H, Lin D Y, Tang Z X, Song X G, He P, Zhang S Y, Bian H, Fu W, Song Y 2024 J. Mater. Sci. Technol. 189 211Google Scholar

    [11]

    Sonar T, Ivanov M, Trofimov E, Tingaev A, Suleymanova I 2024 Mater. Sci. Energy Technol. 7 35

    [12]

    Zhao Q, Ren Z X, Zhao P W, Yoshida K 2025 Phys. Lett. B 860 139196Google Scholar

    [13]

    Gutierrez R E, Matanovic I, Polak M P, Morgan D, Schamiloglu E 2025 J. Electron Spectrosc. Relat. Phenom. 278 147512Google Scholar

    [14]

    Doan D Q, Fang T H, Chen T H 2021 Sci. Rep. 11 13680Google Scholar

    [15]

    Zhang Y, Zuo T T, Tang Z, Gao M C, Dahmen K A, Liaw P K, Lu Z P 2014 Prog. Mater. Sci. 61 1Google Scholar

    [16]

    Jiang Z F, Chen W P, Xia Z B, Xiong W, Fu Z Q 2019 Intermetallics 108 45Google Scholar

    [17]

    Zhang J J, Yang J J, Liu T G, Tian D H, Liu H C, Yang G C, Lu Y H, Shoji T 2024 J. Mater. Res. Technol. 33 6688Google Scholar

    [18]

    Ma Q, Zhao W, Li X, Gao W F, Zhang H, Ma X, Lv Y X, Xiao G C 2024 Mater. Charact. 215 114146Google Scholar

    [19]

    Wang Z W, Li Y C, Dong H, Wang Y 2025 Tribol. Int. 202 110379Google Scholar

    [20]

    Munitz A, Salhov S, Guttmann G, Derimow N, Nahmany M 2019 Mater. Sci. Eng. A 742 1Google Scholar

    [21]

    Segall M D, Lindan P J, Probert M A, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717Google Scholar

    [22]

    Wu T, Yang C, Yu L T, Zheng X F, Zhang L F, Jiang Y T, Xue X P, Lu Y H, Luan B L 2024 Appl. Surf. Sci. 677 161032Google Scholar

    [23]

    Li Z, Gain A K, Cui Y L, Zhang L C 2025 Wear 570 205934Google Scholar

    [24]

    Xie Y J, Jiang W Y, Xu K G, Wen X, Huang B S 2025 Mater. Today Commun. 43 111662Google Scholar

    [25]

    Kang H Y, Yang X H, Sun X Y, Wang C Y, Xiao P 2025 J. Alloys Compd. 1010 177873Google Scholar

    [26]

    Liu S, Zhan Y Z, Wu J Y, Chen X X, Ye H M 2016 Comput. Mater. Sci. 117 1Google Scholar

    [27]

    Chen X Q, Niu H Y, Li D Z, Li Y Y 2011 Intermetallics 19 1275Google Scholar

    [28]

    Sun L, Huang Y D, Zhao K F, Chen Z M, Shang X T, Xu W, Zhai W Y, Han P Y, Jia J, Peng J H 2025 Comput. Condens. Matter 43 e01027Google Scholar

    [29]

    Pugh S F 1954 Philos. Mag. 45 823Google Scholar

    [30]

    Hu W C, Liu Y, Li D J, Li K, Jin H L, Xu Y X, Zeng X Q 2014 Philos. Mag. 94 3945Google Scholar

  • [1] 吴昊, 王旭, 王建元, 翟薇, 魏炳波. 三维超声场调控(FeCoNiCrMn)92Mo8高熵合金组织演变与力学性能. 物理学报, doi: 10.7498/aps.74.20250657
    [2] 伯乐, 高小余, 宁志良, 王力, 孙剑飞, 张振江, 黄永江. 电流处理调控CoCrFeNi高熵合金纤维的组织结构与力学性能. 物理学报, doi: 10.7498/aps.74.20250518
    [3] 华孙铭樯, 孔得通, 胡晓, 厍旭, 王枭, 王远. M(Mn、Ti、Mo)掺杂α-Fe稳定性、电子结构和力学性能的第一性原理计算. 物理学报, doi: 10.7498/aps.74.20251044
    [4] 胡庭赫, 李直昊, 张千帆. 元素掺杂对储氢容器用高强钢性能影响的第一性原理和分子动力学模拟. 物理学报, doi: 10.7498/aps.73.20231735
    [5] 陈晶晶, 邱小林, 李柯, 周丹, 袁军军. 纳米晶CoNiCrFeMn高熵合金力学性能的原子尺度分析. 物理学报, doi: 10.7498/aps.71.20220733
    [6] 邓世杰, 赵宇宏, 侯华, 文志勤, 韩培德. 高压下Ti2AlX(X=C,N)的结构、力学性能及热力学性质. 物理学报, doi: 10.7498/aps.66.146101
    [7] 李明林, 万亚玲, 胡建玥, 王卫东. 单层二硫化钼力学性能温度和手性效应的分子动力学模拟. 物理学报, doi: 10.7498/aps.65.176201
    [8] 樊涛, 曾庆丰, 于树印. Hf-N体系的晶体结构预测和性质的第一性原理研究. 物理学报, doi: 10.7498/aps.65.118102
    [9] 潘新东, 魏燕, 蔡宏中, 祁小红, 郑旭, 胡昌义, 张诩翔. 基于第一性原理计算Rh含量对Ir-Rh合金力学性能的影响. 物理学报, doi: 10.7498/aps.65.156201
    [10] 王海燕, 胡前库, 杨文朋, 李旭升. 金属元素掺杂对TiAl合金力学性能的影响. 物理学报, doi: 10.7498/aps.65.077101
    [11] 马冰洋, 张安明, 尚海龙, 孙士阳, 李戈扬. 共溅射Al-Zr合金薄膜的非晶化及其力学性能. 物理学报, doi: 10.7498/aps.63.136801
    [12] 汝强, 李燕玲, 胡社军, 彭薇, 张志文. Sn3InSb4合金嵌Li性能的第一性原理研究. 物理学报, doi: 10.7498/aps.61.038210
    [13] 赵宇宏, 黄志伟, 李爱红, 穆彦青, 杨伟明, 侯华, 韩培德, 张素英. Nb在Ni3Al中取代行为及合金化效应的第一性原理研究. 物理学报, doi: 10.7498/aps.60.047103
    [14] 侯清玉, 赵春旺, 李继军, 王钢. Al高掺杂浓度对ZnO导电性能影响的第一性原理研究. 物理学报, doi: 10.7498/aps.60.047104
    [15] 侯清玉, 赵春旺, 金永军, 关玉琴, 林琳, 李继军. ZnO高掺杂Ga的浓度对导电性能和红移效应影响的第一性原理研究. 物理学报, doi: 10.7498/aps.59.4156
    [16] 侯清玉, 赵春旺, 金永军. Al-2N高共掺浓度对ZnO半导体导电性能影响的第一性原理研究. 物理学报, doi: 10.7498/aps.58.7136
    [17] 余伟阳, 唐壁玉, 彭立明, 丁文江. α-Mg3Sb2的电子结构和力学性能. 物理学报, doi: 10.7498/aps.58.216
    [18] 翟秋亚, 杨 扬, 徐锦锋, 郭学锋. 快速凝固Cu-Sn亚包晶合金的电阻率及力学性能. 物理学报, doi: 10.7498/aps.56.6118
    [19] 李 腾, 李 卫, 潘 伟, 李岫梅. Fe40—45Cr30—35Co20—25Mo0—4Zr0—2合金微观结构对力学性能的影响. 物理学报, doi: 10.7498/aps.54.4395
    [20] 郑立静, 李树索, 李焕喜, 陈昌麒, 韩雅芳, 董宝中. 7050铝合金等通道转角挤压过程中显微结构和力学性能演化的小角x射线散射研究. 物理学报, doi: 10.7498/aps.54.1665
计量
  • 文章访问数:  228
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-22
  • 修回日期:  2025-09-26
  • 上网日期:  2025-09-30

/

返回文章
返回