搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于质子辐照YBCO超导带材临界电流提升技术

朱晓锋 张素平 张宁 周洪吉 王川 潘高峰 李鹏展 汪洋 张天爵

引用本文:
Citation:

基于质子辐照YBCO超导带材临界电流提升技术

朱晓锋, 张素平, 张宁, 周洪吉, 王川, 潘高峰, 李鹏展, 汪洋, 张天爵

Technology for enhancing critical current of YBCO superconducting tapes via proton irradiation

ZHU Xiaofeng, ZHANG Suping, ZHANG Ning, ZHOU Hongji, WANG Chuan, PAN Gaofeng, LI Pengzhan, WANG Yang, ZHANG Tianjue
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 为提升钇钡铜氧(YBCO)高温超导带材的临界载流能力, 本研究创新性地采用质子辐照技术对工程实用化YBCO带材进行缺陷调控. 基于4.5 MV静电加速器材料辐照终端, 系统开展了3 MeV质子束流在不同注量下的辐照实验, 成功在超导体中构建高密度、低维度的可控人工钉扎中心. 这种缺陷工程通过为磁通线创造低能量钉扎位点, 显著抑制了磁通蠕动现象并增强钉扎作用, 从而显著削弱外磁场对临界电流(Ic)的抑制作用. 实验数据显示, 在注量率为8×1016 p/cm2的辐照条件下, 样品在4.2 K@6.5 T极端工况下的临界电流实现了8倍的突破性提升, 同时在20 K@5 T, 30 K@4 T下临界电流密度最大提升因子分别也达到5.5倍、4.8倍. 这一性能突破显著增强了超导带材在低温高场环境中的应用潜力, 尤其适用于离子加速器、聚变反应堆等对高性能超导磁体有迫切需求的前沿领域. 研究证实, 离子辐照技术无需改变YBCO带材的现有制备工艺, 即可通过缺陷工程实现临界性能的高效优化, 为超导材料的实用化性能调控提供了一条工艺兼容性强、可行性高的技术路径.
    This research adopts an innovative method, i.e. proton irradiation technology, for realizing defect control in practical engineering yttrium barium copper oxide (YBCO) tapes, in order to improve the critical current density of YBCO high-temperature superconducting tapes in high magnetic fields. Based on the material irradiation terminal of the 4.5 MV electrostatic accelerator at Peking University, systematic irradiation experiments are conducted using 3 MeV proton beams on YBCO superconducting tapes at different fluence rates, successfully constructing high-density, low-dimensional controllable artificial pinning centers in the high superconducting tapes. This defect engineering significantly suppresses the flux creep phenomenon and enhances the pinning effect by creating low-energy pinning sites for flux lines, thereby significantly weakening the inhibitory effect of external magnetic fields on critical current (Ic). Comparative analysis of superconducting tapes before and after irradiation is conducted, including superconducting transition temperature, superconducting critical performance, and dependence of critical current density on magnetic field. As the irradiation dose increases, high-density point defects (vacancies, interstitial atoms, etc.) and a small number of vacancy clusters are implanted inside the superconducting tape, resulting in a corresponding decrease in the superconducting phase. Therefore, as the dose increases, the orderliness of the superconducting phase in the superconducting tape decreases sharply, leading to a gradual widening of the superconducting transition temperature zone. By measuring the hysteresis loops of samples irradiated with different doses of protons and calculating the critical current density Jc based on the Bean model, the experimental data show that under irradiation conditions with a fluence rate of 8×1016 P/cm2, the critical current of the sample under extreme operating conditions of 4.2 K and 6.5 T achieves an 8-fold breakthrough improvement. Meanwhile, the maximum improvement factors in critical current density at 20 K and 5 T and 30 K and 4 T are also 5.5 times and 4.8 times, respectively. The logarithmic curve is fitted using the JcB power exponent model, with the power parameter α values of 0.276, 0.361, and 0.397 for the variation of critical current density with magnetic field in three temperature ranges of 4.2 K, 20 K, and 30 K, respectively. This indicates that the superconducting tape irradiated with protons will form more effective strong pinning centers at lower temperatures, reducing the dependence of the critical current density of the superconducting tape on the magnetic field. This performance breakthrough significantly enhances the application potential of high superconducting tapes in low-temperature and high magnetic fields environments, especially in frontier fields such as particle accelerators and fusion reactors, where there is an urgent demand for high-performance superconducting magnets. This work confirms that the proton irradiation technology can efficiently optimize critical performance through defect engineering without changing the existing preparation process of YBCO tapes, thereby providing a highly feasible and process-compatible technical path for realizing the practical performance control of superconducting materials.
  • 图 1  超导带材结构示意图

    Fig. 1.  Structure of high-temperature superconducting tape.

    图 2  H+在Ag和YBCO中的射程

    Fig. 2.  Range of H+ in Ag and YBCO.

    图 3  5种不同辐照注量下样品中引入离位损伤

    Fig. 3.  Simulated displacement damage by H+ ion irradiation at five different doses.

    图 4  4.5 MV静电加速器结构示意图[2]

    Fig. 4.  4.5 MV electrostatic accelerator[2].

    图 5  超导带材辐照实验 (a) 八面体旋转靶; (b) 束流积分仪

    Fig. 5.  Irradiation experiment of superconducting tape: (a) Octagonal rotating target; (b) beam integrator.

    图 6  不同注量下YBCO高温超导带材的超导转变温度曲线

    Fig. 6.  Superconducting transition temperature curve of YBCO high temperature superconducting tapes at different doses.

    图 7  不同温区不同注量下超导带材临界电流密度随磁场的变化

    Fig. 7.  Variation of the critical current density of superconducting tapes with magnetic fields under different temperature zones and magnetic fields.

    图 8  (a)—(c) 分别为4.2 K, 20 K, 30 K温度环境下不同注量的超导带材提升因子随磁场的变化; (d) 注量为8×1016 p/cm2时, 不同温度的超导带材提升因子随磁场的变化

    Fig. 8.  (a)–(c) Enhancement factor of superconducting tapes with different flux levels under magnetic fields at temperatures of 4.2 K, 20 K, and 30 K, respectively; (d) enhancement factor of superconducting tapes at different temperatures with the magnetic field at a flux of 8 × 1016 p/cm2.

    图 9  不同温度下对数坐标下临界电流密度随磁场的变化

    Fig. 9.  Critical current density of high-temperture superconducting tape with magnetic field at different temperatures on logarithmic coordinates.

    表 1  不同离子、能量、注量对REBCO的临界电流性能的提升

    Table 1.  Enhancement of the critical current density of REBCO by different ions, energies, and fluence.

    离子
    种类
    能量/
    MeV
    流强/
    nA
    注量/
    (ions·cm–2)
    Jc备注
    Au181206×1011↑2.527 K@3 T
    He2.52003×1015↑1.810 K@7 T
    Ar2.51205×1011↑2.210 K@7 T
    Ta19005×1011↑4.410 K@7 T
    下载: 导出CSV

    表 2  超导带材辐照注量

    Table 2.  Irradiation fluence of superconducting tape.

    离子种类样品能量/MeV流强/nA注量/(p·cm–2)
    H超导带材310001×1015
    5×1015
    1×1016
    5×1016
    8×1016
    下载: 导出CSV
  • [1]

    Kwok W K, Ulrich W, Glatz A, Koshelev A E, Kihlstrom K J, Crabtree G W 2016 Rep. Prog. Phys. 79 116501Google Scholar

    [2]

    Kwon C, Kinder L R, Gim Y, Fan Y, Coulter J Y, Maley M P, Foltyn S R, Peterson D E, Jia Q X 1999 IEEE Trans. Appl. Supercond. 9 1575Google Scholar

    [3]

    Haberkorn N, Miura M, Baca J, Maiorov B, Usov I, Dowden P, Foltyn S R, Holesinger T G, Willis J O, Marken K R, Izumi T, Shiohara Y, Civale L 2012 Phys. Rev. 85 174504Google Scholar

    [4]

    Xavier O, Teresa P 2014 Supercond. Sci. Technol. 27 044003Google Scholar

    [5]

    Yuh S, Takahiro T, Masateru Y 2012 Jpn. J. Appl. Phys. 51 010007Google Scholar

    [6]

    Sato S, Honma T, Takahashi S, Sato K, Watanabe M, Ichikawa K, Takeda K, Nakagawa K, Saito A, Ohshima S 2013 IEEE Trans. Appl. Supercond. 23 7200404Google Scholar

    [7]

    Macmanus-Driscoll J L, Foltyn S R, Jia Q X, Wang H, Serquis A, Civale L, Maiorov B, Hawley M E, Maley M P, Peterson D E 2004 Nat. Mater. 3 439Google Scholar

    [8]

    Zhou Y X, Ghalsasi S, Rusakova I, Salama K 2007 Supercond. Sci. Technol. 20 S147Google Scholar

    [9]

    Jia Y, LeRoux M, Miller D J, Wen J G, Kwok W K, Welp U, Rupich M W, Li X, Sathyamurthy S, Fleshler S, Malozemoff A P, Kayani A, Ayala-Valenzuela O, Civale L 2013 Appl. Phys. Lett. 103 010007

    [10]

    Leroux M, Kihlstrom K J, Holleis S, Rupich M W, Sathyamurthy S, leshler S, Sheng H P, Miller D J, Eley S, Civale L, Kayani A, Niraula P M, Welp U, Kwok W K 2015 Appl. Phys. Lett. 107 192601Google Scholar

    [11]

    Fischer D X, Prokopec R, Emhofer J, Eisterer M 2018 Supercond. Sci. Technol. 31 044006Google Scholar

    [12]

    Khadzhai G Y, Litvinov Y V, Vovk R V, Zdorovko S F, Goulatis I L, Chroneos A 2018 J. Mater. Sci. Mater. El. 29 7725Google Scholar

    [13]

    Biswal R, John J, Behera D, Kanjilal D, Avasthi D K, Mishra N C 2008 Supercond. Sci. Technol. 1063 245

    [14]

    Civale L, Marwick A D, Worthington T K, Kirk M A, Thompson J R, Krusin-Elbaum L, Sun Y, Clem J R, Holtzberg F 1991 Phys. Rev. Lett. 67 648Google Scholar

    [15]

    Gu Y, Cai C B, Liu Z Y, Liu J, Liu L, Huang R T 2021 J. Appl. Phys. 130 085304Google Scholar

    [16]

    Rupich M W, Sathyamurthy S, Fleshler S, Li Q, Solovyov V, Ozaki T, Welp U, Kwok W K, Leroux M, Koshelev A E, Miller D J, Kihlstrom K, Civale L, Eley S, Kayani A 2016 IEEE Trans. Appl. Supercond. 26 1

    [17]

    Eley S, Leroux M, Rupich M W, Miller D J, Sheng H, Niraula P M, Kayani A, Welp U, Kwok W K, Civale L 2017 Superconductor Science Technology 30 305

    [18]

    Gao Y, Wang J Y, Yang X J, Gong J H, Lu X C 2015 Nucl. Phys. Rev. 32 20 [高原, 王建勇, 杨向军, 龚建华, 路祥臣 2015 原子核物理评论 32 20]

    Gao Y, Wang J Y, Yang X J, Gong J H, Lu X C 2015 Nucl. Phys. Rev. 32 20

    [19]

    Zhao P, Wang J Q, Chen M Q, Yang J X, Su Z X, Lu C Y, Liu H J, Hong Z Y, Gao R 2024 Acta Phys. Sin. 73 087401 [赵珀, 王建强, 陈梅清, 杨金学, 苏钲雄, 卢晨阳, 刘华军, 洪智勇, 高瑞 2024 物理学报 73 087401]Google Scholar

    Zhao P, Wang J Q, Chen M Q, Yang J X, Su Z X, Lu C Y, Liu H J, Hong Z Y, Gao R 2024 Acta Phys. Sin. 73 087401Google Scholar

    [20]

    Dan M, Chen L J, He Y B, Lü X W, Wan J H, Zhang H, Zhang K J, Yang Y, Jin F Y 2022 Acta Phys. Sin. 71 237401 [但敏, 陈伦江, 贺岩斌, 吕兴旺, 万俊豪, 张虹, 张珂嘉, 杨莹, 金凡亚 2022 物理学报 71 237401]Google Scholar

    Dan M, Chen L J, He Y B, Lü X W, Wan J H, Zhang H, Zhang K J, Yang Y, Jin F Y 2022 Acta Phys. Sin. 71 237401Google Scholar

    [21]

    李敏娟 2018 博士学位论文 (上海: 上海大学)

    Li M J 2018 Ph. D. Dissertation (Shanghai: Shanghai University

    [22]

    Cui X M, Liu G Q, Wang J, Huang Z C, Zhao Y T, Tao B W, Li Y R 2007 Physica C 466 1Google Scholar

  • [1] 朱晓锋, 张素平, 张宁, 周洪吉, 王川, 潘高峰, 李鹏展, 汪洋, 张天爵. 基于质子辐照YBCO超导带材临界电流提升技术研究. 物理学报, doi: 10.7498/aps.75.20251031
    [2] 赵珀, 王建强, 陈梅清, 杨金学, 苏钲雄, 卢晨阳, 刘华军, 洪智勇, 高瑞. EuBa2Cu3O7–δ超导带材中掺杂相对He+离子辐照缺陷演化及超导电性的影响. 物理学报, doi: 10.7498/aps.73.20240124
    [3] 傅婧, 蔡毓龙, 李豫东, 冯婕, 文林, 周东, 郭旗. 质子辐照下正照式和背照式图像传感器的单粒子瞬态效应. 物理学报, doi: 10.7498/aps.71.20211838
    [4] 刘晔, 郭红霞, 琚安安, 张凤祁, 潘霄宇, 张鸿, 顾朝桥, 柳奕天, 冯亚辉. 质子辐照作用下浮栅单元的数据翻转及错误退火. 物理学报, doi: 10.7498/aps.71.20212405
    [5] 梁超, 张洁, 赵可, 羊新胜, 赵勇. 拓扑超导体FeSexTe1–x单晶超导性能与磁通钉扎. 物理学报, doi: 10.7498/aps.69.20201125
    [6] 李哲夫, 贾彦彦, 刘仁多, 徐玉海, 王光宏, 夏晓彬, 沈卫祖. 质子辐照对永磁合金微观结构演化的研究. 物理学报, doi: 10.7498/aps.67.20172025
    [7] 张宁, 张鑫, 杨爱香, 把得东, 冯展祖, 陈益峰, 邵剑雄, 陈熙萌. 质子束辐照单层石墨烯的损伤效应. 物理学报, doi: 10.7498/aps.66.026103
    [8] 曾骏哲, 李豫东, 文林, 何承发, 郭旗, 汪波, 玛丽娅, 魏莹, 王海娇, 武大猷, 王帆, 周航. 质子与中子辐照对电荷耦合器件暗信号参数的影响及其效应分析. 物理学报, doi: 10.7498/aps.64.194208
    [9] 杨剑群, 李兴冀, 马国亮, 刘超铭, 邹梦楠. 170keV质子辐照对多壁碳纳米管薄膜微观结构与导电性能的影响. 物理学报, doi: 10.7498/aps.64.136401
    [10] 文林, 李豫东, 郭旗, 任迪远, 汪波, 玛丽娅. 质子辐照导致科学级电荷耦合器件电离效应和位移效应分析. 物理学报, doi: 10.7498/aps.64.024220
    [11] 曾骏哲, 何承发, 李豫东, 郭旗, 文林, 汪波, 玛丽娅, 王海娇. 电荷耦合器件在质子辐照下的粒子输运仿真与效应分析. 物理学报, doi: 10.7498/aps.64.114214
    [12] 吕玲, 张进成, 李亮, 马晓华, 曹艳荣, 郝跃. 3 MeV质子辐照对AlGaN/GaN高电子迁移率晶体管的影响. 物理学报, doi: 10.7498/aps.61.057202
    [13] 王妙, 杨万民, 张晓菊, 唐艳妮, 王高峰. 不同粒径纳米Y2Ba4CuBiOy 相掺杂对TSIG法单畴YBCO超导块材性能的影响. 物理学报, doi: 10.7498/aps.61.196102
    [14] 高鹏举, 章文贡, 陈淑卿, 周秀华, 肖丽足. YBCO/聚丙烯腈杂化膜及其超导性研究. 物理学报, doi: 10.7498/aps.59.583
    [15] 赵慧杰, 何世禹, 孙彦铮, 孙强, 肖志斌, 吕伟, 黄才勇, 肖景东, 吴宜勇. 100 keV质子辐照对空间GaAs/Ge太阳电池光电效应的影响. 物理学报, doi: 10.7498/aps.58.404
    [16] 范鲜红, 李 敏, 尼启良, 刘世界, 王晓光, 陈 波. Mo/Si多层膜在质子辐照下反射率的变化. 物理学报, doi: 10.7498/aps.57.6494
    [17] 范鲜红, 陈 波, 关庆丰. 质子辐照对纯铝薄膜微观结构的影响. 物理学报, doi: 10.7498/aps.57.1829
    [18] 陈昌兆, 蔡传兵, 刘志勇, 应利良, 高 波, 刘金磊, 鲁玉明. NdBa2Cu3O7-δ/YBa2Cu3O7-δ多层膜体系的外延结构和磁通钉扎的研究. 物理学报, doi: 10.7498/aps.57.4371
    [19] 魏 强, 刘 海, 何世禹, 郝小鹏, 魏 龙. 质子辐照铝膜反射镜的慢正电子湮没研究. 物理学报, doi: 10.7498/aps.55.5525
    [20] 张国勇, 张鹏翔. 测量高温超导YBCO薄膜厚度的一种新方法. 物理学报, doi: 10.7498/aps.50.1451
计量
  • 文章访问数:  13
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-01
  • 修回日期:  2025-10-27
  • 上网日期:  2025-12-13

/

返回文章
返回